首页> 外文学位 >Acoustic wedge transducer modules for outdoor surface acoustic wave touch panels and multi-target laser range-finding receiver.
【24h】

Acoustic wedge transducer modules for outdoor surface acoustic wave touch panels and multi-target laser range-finding receiver.

机译:用于室外声表面波触摸面板和多目标激光测距接收器的声楔换能器模块。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation consists of two topics in the area of surface acoustic waves (Rayleigh waves) and laser range-finding systems. The technology of surface acoustic waves (SAW) is widely used in a number of applications, such as detection of surface cracks or flaws, touch panels, and SAW filters. The propagation of SAWs on the surface of solid materials has been used to detect hidden cracks or other surface discontinuities in a medium. They are also readily attenuated when a soft object touches the surface of medium. For a piezoelectric material, SAWs can be generated using a transducer of interdigitated electrodes fabricated on the surface. However, most materials are nonpiezoelectric. A method to produce SAWs on a non-piezoelectric material is from converting bulk acoustic waves, generated by acoustic transducers, using the equivalence of Snell's law in optics.;This dissertation first reports the input impedance matching technique of acoustic transducers. It uses an inherent impedance property of transducers and thus does not need an external electric matching circuit or extra acoustic matching section. The transducer size can be properly chosen so that the impedance at off-resonant frequencies is close to 50 O, the output impedance of signal generators. At this off-resonant operating frequency, the reflection coefficient of the transducer is minimized without using any matching circuit. Other than the size, the impedance can also be fine tuned by adjusting the thickness of material that bonds the transducer plate to the substrates.;Another concern is the acoustic prisms to generate SAW on glass, from bulk waves which are generated by acoustic transducers. To satisfy the Snell's law, longitudinal bulk wave propagating in the acoustic prism must be slower than the SAWs on the nonpiezoelectric material. This posts a challenge because the SAW velocity is approximately 50% of the longitudinal wave velocity in the same material. It is very hard to find a material in which the longitudinal wave velocity is slow and the propagation loss is acceptable. For nearly all SAW-based touch panels on the market, the acoustic prisms are made of Lucite. An issue with Lucite is its high coefficient of thermal expansion (CTE), which is much higher than that of glass panels and piezoelectric ceramics. In outdoor environments with large temperature variations, this large CTE mismatch can cause the Lucite prism to break off the glass panel and the piezoelectric transducer to break away from the Lucite prism. After an extensive search, we indentified liquid crystal polymer (LCP) and bismuth (Bi) as potential acoustic prism materials having low CTE. Following the Telcordia GR-468-Core recommendation, the wedge modules went through thermal cycling between -45°C and 85°C for 1,000 cycles. The wedge modules with the Lucite prism broke before 50 cycles. The wedge modules with LCP and Bi prisms survived the 1,000 cycles. In terms of acoustic performance, the wedge module with the LCP prisms is as good as the wedge module with the Lucite prism. Accordingly, LCP is the best prism material for SAW-based touch panels in outdoor applications.;The second topic evaluates and implements the use of silicon photomultiplier (SiPM) array module as the receiver for laser range-finding experiments to simultaneously measure the range of multiple targets. The array consists of 4 x 4 SiPMs on a single chip. Each SiPM is followed by a trans-impedance amplifier to have an adequate output signal voltage. The 4 x 4 array is capable of measuring the range of 16 targets. A SiPM is an avalanche photodiode that operates in Geiger mode where a huge multiplication factor, as high as 1,000,000, is obtainable. Thus, it can achieve high sensitivity. Our performance evaluation results show that the sensitivity of the SiPMs measured actually approaches the quantum limit. The SiPM can detect as little as one single photoelectron in the depletion region. Each SiPM has a large active area, 8 mm2, and can collect much more returned light compared to typical Si-APDs. The rise time of the output voltage waveforms from SiPMs vary from 6 ns to 300 ns, depending on the incident light power. The rising edges of the output waveforms are compared for time measurement. Using a digital oscilloscope, the time of flight can be measured with 1 ns accuracy. This corresponds to a range resolution of 15 cm.
机译:论文由声表面波(瑞利波)和激光测距系统两个领域组成。表面声波(SAW)技术广泛用于许多应用中,例如表面裂缝或缺陷的检测,触摸面板和SAW滤波器。 SAW在固体材料表面上的传播已用于检测介质中的隐藏裂纹或其他表面不连续性。当软物体接触介质表面时,它们也容易衰减。对于压电材料,可以使用在表面上制成的叉指式电极的换能器生成SAW。但是,大多数材料是非压电的。一种在非压电材料上产生声表面波的方法是利用光学的斯涅尔定律的等效性,将声换能器产生的体声波转换成声波。本文首先介绍了声换能器的输入阻抗匹配技术。它利用了换能器的固有阻抗特性,因此不需要外部电匹配电路或额外的声匹配部分。可以适当选择换能器的尺寸,以使非谐振频率下的阻抗接近50 O(信号发生器的输出阻抗)。在此非谐振工作频率下,无需使用任何匹配电路即可使换能器的反射系数最小。除了尺寸之外,还可以通过调节将换能器板粘合到基板上的材料的厚度来微调阻抗。另一个需要关注的问题是声棱镜在玻璃上从声换能器产生的体波产生声表面波。为了满足斯涅尔定律,在声棱镜中传播的纵向体波必须慢于非压电材料上的声表面波。这是一个挑战,因为SAW速度大约是同一材料中纵向波速度的50%。很难找到纵波速度慢且传播损耗可以接受的材料。对于市场上几乎所有基于SAW的触摸屏,声棱镜都是由Lucite制成的。 Lucite的一个问题是其高的热膨胀系数(CTE),它远高于玻璃面板和压电陶瓷的热膨胀系数。在温度变化较大的室外环境中,这种较大的CTE失配会导致Lucite棱镜从玻璃面板上脱落,而压电换能器从Lucite棱镜上脱离。经过广泛搜索,我们确定液晶聚合物(LCP)和铋(Bi)是具有低CTE的潜在声学棱镜材料。根据Telcordia GR-468-Core的建议,楔形模块在-45°C至85°C的温度范围内进行了1000次循环热循环。带有Lucite棱镜的楔形模块在50个循环之前破裂。具有LCP和Bi棱镜的楔形模块可以承受1000次循环。在声学性能方面,带有LCP棱镜的楔形模块与带有Lucite棱镜的楔形模块一样好。因此,LCP是户外应用中基于SAW的触摸屏的最佳棱镜材料。;第二个主题评估并实现了将硅光电倍增管(SiPM)阵列模块用作激光测距实验的接收器,以同时测量激光测距的范围。多个目标。该阵列在单个芯片上包含4 x 4 SiPM。每个SiPM后接一个跨阻放大器,以具有足够的输出信号电压。 4 x 4阵列能够测量16个目标的范围。 SiPM是一种雪崩光电二极管,以盖革模式工作,可获得高达1,000,000的巨大倍增系数。因此,可以实现高灵敏度。我们的性能评估结果表明,所测量的SiPM的灵敏度实际上接近量子极限。 SiPM可以在耗尽区中检测到少至一个光电子。与典型的Si-APD相比,每个SiPM都有一个8平方毫米的大有效面积,并且可以收集更多的返回光。 SiPM的输出电压波形的上升时间在6 ns到300 ns之间变化,具体取决于入射光功率。比较输出波形的上升沿以进行时间测量。使用数字示波器,可以以1 ns的精度测量飞行时间。这对应于15厘米的范围分辨率。

著录项

  • 作者

    Son, Kyu Tak.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Engineering Electronics and Electrical.;Physics Optics.;Physics Acoustics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号