首页> 外文学位 >Ultrafast optical parametric processes in photonic crystal fibers: Fundamentals and applications.
【24h】

Ultrafast optical parametric processes in photonic crystal fibers: Fundamentals and applications.

机译:光子晶体光纤中的超快光学参量过程:基本原理和应用。

获取原文
获取原文并翻译 | 示例

摘要

Facilitated by the advent of photonic crystal fibers two decades ago, the moded-locked fiber lasers become the new trend of ultrafast light sources. Nevertheless, their major limitations are the output wavelength range and pulse quality. Motivated by building widely tunable ultrashort light sources, this thesis focuses on the experimental and theoretical studies of fiber optical parametric process. As one important application of this process, fiber optical parametric oscillator (FOPO), promises to address the shortcomings of fiber lasers.;From the application point of view, it is important to manage and optimize the output performance of light sources such as the pulse duration, pulse shape, spectrum width and so on. So there is a need to clearly understand the pulse evolution from a platform of applied mathematics. Under this theoretical guidance, experimental work can be better oriented to develop functional light sources which address needs for applications such as pulsed-light microscopy, multiphoton spectroscopy and so on.;We demonstrate FOPO as tunable light sources in both femtosecond and picosecond domains. For the femtosecond operation, we generate sub-50 f s pulses with linear chirp. The studies on the pulse quality are carried out where the fiber length inside the oscillator is varied. In particular, our studies focus on dispersive pulse broadening and walk-off effects which influence the performance of FOPO. The optimal condition, i.e., the shortest pulse duration, arises from the minimization of these two effects. For the picosecond operation, we generate pulses with the duration of 2 ∼ 4 ps. The experiment also reveals that the spectral shape and width of output pulses are determined by cross-phase modulation and cavity synchronization. More precisely, the spectrum exhibits pump power dependent broadening which can be asymmetric with a red or blue shift depending on cavity synchronization. Moreover, the average power conversion efficiency is maximized by adjusting the cavity length to the long range of its operation which leads to a blue shifted spectrum.;To capture the operational principles and precisely emulate the performance of FOPO, we also focus on the theoretical analysis of fiber optical parametric processes. We extend the previous theory of partially degenerate four-wave mixing to the ultrafast situation where waves are all ultrashort pulses with broadband spectra. Then we perform the simulation based on justified parameters and compare our calculation results with experimental data. We find both experimentally and numerically that there exhibits an interesting symmetry behavior in the frequency domain - two widely separated spectral sidebands can always behave as mirror images of one another with respect to the center frequency of the controlling pump pulse. We call this interesting physical phenomenon "Spectral Mirror Imaging". Not just limited to the numerical computation, under certain operation regime we obtain an analytic solution and clarify the physical mechanisms of this phenomenon. A simple analytical expression for the coupled governing equations of two sideband spectra is obtained, which reveals that the opposite values of group-velocity dispersion and the complex-conjugated parametric gain are the physical mechanisms responsible for this phenomenon. Furthermore, we give a comparison between spectral reversal and time reversal.
机译:二十年前,由于光子晶体光纤的出现,锁模光纤激光器成为超快光源的新趋势。尽管如此,它们的主要限制还是输出波长范围和脉冲质量。通过构建可广泛调谐的超短光源,本论文着重研究光纤光学参量过程的实验和理论研究。光纤参量振荡器(FOPO)作为该过程的重要应用之一,有望解决光纤激光器的缺点。;从应用的角度来看,管理和优化诸如脉冲等光源的输出性能非常重要。持续时间,脉冲形状,频谱宽度等。因此,需要从应用数学平台清楚地了解脉冲的演变。在此理论指导下,实验工作可以更好地面向开发功能性光源,从而满足诸如脉冲光显微镜,多光子光谱等应用的需求。我们证明了FOPO作为飞秒和皮秒域中的可调光源。对于飞秒操作,我们生成线性-50的低于50 f s的脉冲。在改变振荡器内部的光纤长度的情况下,对脉冲质量进行了研究。特别地,我们的研究集中在影响FOPO性能的色散脉冲展宽和离散效应。最佳条件,即最短的脉冲持续时间,是由于这两种效应的最小化而产生的。对于皮秒操作,我们会产生2到4 ps持续时间的脉冲。实验还表明,输出脉冲的频谱形状和宽度由交叉相位调制和腔同步确定。更准确地说,该光谱表现出依赖于泵浦功率的展宽,根据腔同步,该展宽可以是不对称的,具有红色或蓝色偏移。此外,通过将谐振腔的长度调整到其工作的较长范围可以使平均功率转换效率最大化,从而导致频谱发生蓝移。;为了捕获工作原理并精确模拟FOPO的性能,我们还着重于理论分析光纤参数化过程。我们将先前的部分简并四波混频理论扩展到超快的情况,即波都是具有宽带频谱的超短脉冲。然后,我们根据合理的参数进行仿真,并将计算结果与实验数据进行比较。我们从实验和数值上都发现,在频域中表现出有趣的对称行为-相对于控制泵浦脉冲的中心频率,两个相距很远的频谱边带始终可以互为镜像。我们称这种有趣的物理现象为“光谱镜成像”。不仅限于数值计算,在一定操作条件下,我们获得了解析解并阐明了这种现象的物理机制。得到了两个边带谱耦合控制方程的简单解析表达式,表明组速度色散和复共轭参数增益的相反值是造成这种现象的物理机制。此外,我们对频谱反转和时间反转进行了比较。

著录项

  • 作者

    Gu, Chenji.;

  • 作者单位

    University of California, Merced.;

  • 授予单位 University of California, Merced.;
  • 学科 Physics Optics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 122 p.
  • 总页数 122
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号