首页> 外文学位 >Observing network design for improved prediction of geophysical fluid flows: Analysis of ensemble methods.
【24h】

Observing network design for improved prediction of geophysical fluid flows: Analysis of ensemble methods.

机译:观测网络设计,以改进对地球物理流体流量的预测:整体方法分析。

获取原文
获取原文并翻译 | 示例

摘要

The skill of dynamical atmospheric forecasts is intimately connected to the accuracy and coverage of observations. Observational resources are limited. Optimizing the use of observations is key to improving atmospheric forecasts of the future. The development and testing of algorithms that can be used to optimize the design of observational networks is the subject of this thesis.; Observations can generally be broken down into two categories; Adaptive and Routine. Adaptive (Routine) observations consist of measurements from instruments whose locations can (can not) be willingly altered at each observing time. Chapter 2 develops a novel Estimation Theory based framework for developing solutions to the Adaptive Observations problem. A series of computationally efficient approximations of the general theory are then discussed. The theoretical relationships of these methods to the general framework are pointed out. In Chapter 3, a series of Observing System Simulation Experiments are performed to investigate a number of key issues concerning Estimation Theory based Adaptive Observation algorithms. Fundamental problems associated with computationally efficient Adaptive Observing schemes are examined. The potential benefits of the most general Adaptive Observation methodology in Chapter 2 are also examined. The implications of these results for operational Adaptive Observations is discussed.; In Chapter 4, a framework for defining a cost function appropriate for designing optimal configurations of routine observing networks is developed. The cost function can be evaluated using a retrospective analysis of output data from an ensemble filter based prediction system. Evaluation of the cost function does not require repeated integrations of the prediction model, and therefore offers significant computational advantages over traditional approaches such as Observing System Simulation Experiments. For a wide variety of observing system design problems, the statistical and dynamical significance of the algorithm (called the Retrospective Design Algorithm) is demonstrated using the nonlinear Lorenz 1996 model (Chapter 4) and an Atmospheric General Circulation model (Chapter 5). The implications of the results in Chapters 4 and 5 for the general problem of routine observing network design in very high dimensional systems is explored.
机译:动态大气预报的技巧与观测的准确性和覆盖范围密切相关。观测资源有限。优化观测的使用是改善未来大气预报的关键。可以用于优化观测网络设计的算法的开发和测试是本文的主题。观察通常可以分为两类:自适应和例行。自适应(常规)观测包括仪器的测量,这些仪器的位置在每个观察时间都可以(不能)随意改变。第2章开发了一种新颖的基于估计理论的框架,用于开发自适应观测问题的解决方案。然后讨论了一般理论的一系列计算有效近似。指出了这些方法与总体框架的理论关系。在第3章中,进行了一系列观测系统仿真实验,以研究与基于估计理论的自适应观测算法有关的许多关键问题。研究了与计算有效的自适应观测方案相关的基本问题。在第2章中,还将介绍最通用的自适应观测方法的潜在优势。讨论了这些结果对实际适应性观测的意义。在第4章中,开发了一种框架,该框架用于定义适合于设计常规观测网络的最佳配置的成本函数。可以使用对基于集成滤波器的预测系统的输出数据进行回顾性分析来评估成本函数。成本函数的评估不需要重复集成预测模型,因此与传统方法(如观测系统模拟实验)相比,具有明显的计算优势。对于各种各样的观测系统设计问题,使用非线性Lorenz 1996模型(第4章)和大气总循环模型(第5章)演示了该算法(称为追溯设计算法)的统计和动态意义。第四章和第五章的结果对于在高维系统中常规观测网络设计的一般问题的意义进行了探讨。

著录项

  • 作者

    Khare, Shree Prakash.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Physics Atmospheric Science.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 195 p.
  • 总页数 195
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 大气科学(气象学);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号