首页> 外文学位 >Asynchronous Sensor and Wireless Communication Circuits and Systems.
【24h】

Asynchronous Sensor and Wireless Communication Circuits and Systems.

机译:异步传感器和无线通信电路与系统。

获取原文
获取原文并翻译 | 示例

摘要

In recent years, there is a growing demand of wireless sensory devices, especially in biomedical applications. The circuits and systems deployed in such applications require a low-power and low-complexity design. One of the most difficult challenges in this field is that the large data amount generated by the sensors is hard to be transmitted due to the limited speed of the low power wireless device. In order to solve this problem, in this dissertation we explored the asynchronous analog and RF signal processing techniques, and demonstrated the feasibility through circuits and systems implementation.;In the beginning of this thesis, wireless bio-potential recording system will be introduced to present the background and motivation of this study. In order to minimize the power and complexity of the quantization circuits and reduce the total output data size, the fixed window level crossing sampling method is applied in the sensor. Since the input spike signals are with low activity ratio, by taking the advantages from this signal property, the idea of saving the system power is to shut down the circuits when the input signal is silent. To achieve this, we used asynchronous delta modulator as the analog to digital convertor in the sensor. In order to further reduce the power and circuit complexity, we proposed and designed a fixed window level crossing sampling method. This method minimized the power and complexity of the quantization circuits. When the resolution is less than 7 bits, the data compression rate is more than 50%. Asynchronous pulse sequences will be generated to represent the spike signal. The integrated 4-channel sensor front end was fabricated with AMI 0.5um CMOS process, with total power consumption at 0.5mW when the sampling rate is 60kS/s with 5-bit resolution.;In the wireless part, we use a non-coherent UWB impulse radio system as the wireless data link in order to minimize the power consumption for the asynchronous wireless sensor and communication system. We demonstrate a UWB impulse radio transmission system with a integrated front-end transmitter and a receiver using off-the-shelf-component. The system can support 14Mbps data rate. The circuits and systems are applied to a wireless neural recording system and a wireless temporal difference image sensor with Manchester Encoding / Decoding to provide data and clock recovery. Experiment results from the two systems are reported.;Another challenge in the low power wireless system is to perform power efficient clock and data recovery. Current solutions use digital baseband circuits, phase locked loops circuits and a synchronization header in the preamble of data package. Those methods fall short of meeting the requirements of the low power low complexity transmission, because the wireless circuits are running even when the sensor input signal is inactive. That means the system wastes power if the input signal is with low active rate. Also, the training time of the phase locked loop by synchronization preamble will reduce effective data rate in the wireless link.;To solve this problem, we proposed a non-coherent FSK-OOK modulation and demodulation for UWB impulse radio. The radio uses different carrier frequencies to represent the symbol 1 and 0 while using on-off keying modulation to isolate two adjacent symbols in each frequency band. By doing so, the receiver can perform data and clock recovery simultaneously without PLL training or wake-up time. The pulse duration is controllable to guarantee the low duty cycling of the pulse in order to meet the UWB mask from Federal Communication Commission. The wireless link can be silent when there is no event or no data to transmit. Also the digital baseband and phase locked loop are not necessary in the FSK-OOK receiver. This could save power and silicon area of the receiver. We have fabricated the integrated FSK-OOK UWB transmitter on 0.25um Silicon on Sapphire process. The system can send and receive data with a maximum 30Mbps data rate. This modulation method is an ideal candidate for wireless bio-potential recording systems, temporal different image sensors or other sensor network systems.;At the end of this thesis, we summarized the contribution of this work. Based on this thesis, we also proposed some potential projects for future such as wireless address event representation systems using the asynchronous wireless sensory technologies.
机译:近年来,对无线传感设备的需求不断增长,尤其是在生物医学应用中。在此类应用中部署的电路和系统需要低功耗和低复杂度的设计。该领域中最困难的挑战之一是由于低功率无线设备的速度有限而难以传输由传感器生成的大量数据。为了解决这个问题,本文探讨了异步模拟和射频信号处理技术,并通过电路和系统实现论证了可行性。本文以无线生物电势记录系统为例进行介绍。这项研究的背景和动机。为了最小化量化电路的功率和复杂性并减小总输出数据大小,在传感器中采用了固定的窗口电平交叉采样方法。由于输入尖峰信号具有较低的活动率,因此,通过利用此信号属性的优势,节省系统电源的想法是在输入信号静音时关闭电路。为此,我们在传感器中使用了异步增量调制器作为模数转换器。为了进一步降低功耗和电路复杂度,我们提出并设计了一种固定的窗口电平交叉采样方法。该方法使量化电路的功率和复杂度最小化。当分辨率小于7位时,数据压缩率大于50%。将生成异步脉冲序列来表示尖峰信号。集成的4通道传感器前端采用AMI 0.5um CMOS工艺制造,当采样率为60kS / s(5位分辨率)时,总功耗为0.5mW。在无线部分,我们使用了非相干的UWB脉冲无线系统作为无线数据链路,以最小化异步无线传感器和通信系统的功耗。我们演示了一个UWB脉冲无线电传输系统,该系统具有集成的前端发射机和使用现成组件的接收机。系统可以支持14Mbps的数据速率。该电路和系统应用于具有曼彻斯特编码/解码的无线神经记录系统和无线时差图像传感器,以提供数据和时钟恢复。报告了两个系统的实验结果。低功耗无线系统的另一个挑战是执行节能时钟和数据恢复。当前的解决方案在数据封装的前同步码中使用数字基带电路,锁相环电路和同步头。这些方法不能满足低功率,低复杂度传输的要求,因为即使传感器输入信号处于非活动状态,无线电路也正在运行。这意味着如果输入信号的有效速率较低,则系统会浪费功率。此外,同步前同步码对锁相环的训练时间会降低无线链路中的有效数据速率。为了解决这一问题,我们提出了一种用于UWB脉冲无线电的非相干FSK-OOK调制和解调方法。无线电使用不同的载波频率来表示符号1和0,同时使用开关键控调制来隔离每个频带中的两个相邻符号。这样,接收器可以同时执行数据和时钟恢复,而无需PLL训练或唤醒时间。脉冲持续时间是可控制的,以确保脉冲的低占空比,从而符合联邦通信委员会的UWB掩码。当没有事件或没有数据要传输时,无线链接可以保持沉默。另外,FSK-OOK接收器中也不需要数字基带和锁相环。这样可以节省功率和接收器的硅面积。我们已经在0.25um蓝宝石硅上制造了集成的FSK-OOK UWB发射器。系统可以以最大30Mbps的数据速率发送和接收数据。该调制方法是无线生物电势记录系统,时间不同的图像传感器或其他传感器网络系统的理想候选者。在本文的最后,我们总结了这项工作的贡献。在此基础上,我们还提出了一些未来的潜在项目,例如使用异步无线传感技术的无线地址事件表示系统。

著录项

  • 作者

    Tang, Wei.;

  • 作者单位

    Yale University.;

  • 授予单位 Yale University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号