首页> 外文学位 >FDTD Computational Electromagnetics Modeling of Spatial Optical Solitons.
【24h】

FDTD Computational Electromagnetics Modeling of Spatial Optical Solitons.

机译:FDTD空间光孤子的计算电磁建模。

获取原文
获取原文并翻译 | 示例

摘要

The frontier for computing and telecommunications holds the prospects for a significant development in terms of speed and capability. This is clearly apparent in the wealth of research findings in nanophotonics technology over the last ten years. Electronic-based processors and traditional transmission lines find an ultimate limit on their capability as frequencies are pushed higher. Moving to an all-optical processor architecture where operation at micron- and smaller wavelengths would offer incredible speed capabilities approaching the speed of light. The primary limitations to realize important optical computing technologies would be manipulating and generating lightwave signals on the nanometer scale.;Whereas analytical methods can reveal tradeoffs in simplified problems of optical signal processing, and prototype experimentation can demonstrate real-world behavior of designs, these represent two extremes of the design process in terms of time and cost. The best solution between these is that of a computational model, offering deeper insight to the complex physics of the problem but still performed in a virtual environment. The finite-difference time-domain (FDTD) method is a computational electromagnetic modeling tool that powerfully analyzes practical photonics problems by iterative solution of Maxwell's equations directly. It holds an advantage over other methods of computation (e.g., method of moments) in that it can show the evolution of transient effects, show broadband physical behavior, and conveniently accommodate complex material properties.;This thesis summarizes research on FDTD applied to nanophotonics, specifically to the problem of light manipulation on the nanometer scale. Exploiting nonlinearity in optics is an attractive endeavor because light beams---known as solitons---can be made to retain their transverse profile over long propagation distances, overcoming diffraction. This offers the ability to preserve signal quality and ease the manipulation process in optical switching applications. In this work we explore the application of specialized FDTD nonlinear optics algorithms to modeling the control and exotic phenomena of spatial solitons. For the first time FDTD is used to simulate unique soliton guided optics problems of interest, as well as soliton interaction with metals. This work is very relevant and useful towards the quest for progressing an all-optical computing architecture.
机译:在速度和能力方面,计算和电信领域的前景广阔。在过去的十年中,纳米光子学技术的大量研究结果清楚地表明了这一点。随着频率的升高,基于电子的处理器和传统的传输线发现了其功能的极限。转向全光处理器架构,在这种架构下,微米级或更小的波长下的操作将提供接近光速的惊人速度能力。实现重要的光学计算技术的主要限制是在纳米级上操纵和生成光波信号。虽然分析方法可以揭示光信号处理的简化问题中的取舍,而原型实验可以证明设计的真实行为,但这些代表了在时间和成本方面,设计过程有两个极端。这两者之间最好的解决方案是计算模型,可以对问题的复杂物理原理提供更深入的了解,但仍可以在虚拟环境中执行。时域有限差分(FDTD)方法是一种计算电磁建模工具,可以直接通过麦克斯韦方程组的迭代解来有效地分析实际的光子学问题。与其他计算方法(例如矩量法)相比,它具有优势,因为它可以显示瞬态效应的演化,显示宽带物理行为,并方便地容纳复杂的材料特性。;本文总结了FDTD在纳米光子学中的研究,专门针对纳米级的光控制问题。利用光学非线性是一项吸引人的工作,因为可以使光束(称为孤子)在较长的传播距离上保持其横向轮廓,从而克服衍射。这提供了保持信号质量并简化光交换应用中的处理过程的能力。在这项工作中,我们探索了专用FDTD非线性光学算法在建模空间孤子的控制和奇异现象中的应用。 FDTD首次用于模拟感兴趣的独特的孤子导向光学问题以及孤子与金属的相互作用。这项工作对于寻求发展全光学计算体系结构非常相关且有用。

著录项

  • 作者

    Lubin, Zachary.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Physics Electricity and Magnetism.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 116 p.
  • 总页数 116
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号