首页> 外文学位 >Dynamic synthesis/design and operation/control optimization approach applied to a solid oxide fuel cell based auxiliary power unit under transient conditions.
【24h】

Dynamic synthesis/design and operation/control optimization approach applied to a solid oxide fuel cell based auxiliary power unit under transient conditions.

机译:动态合成/设计和运行/控制优化方法在瞬态条件下应用于基于固体氧化物燃料电池的辅助动力装置。

获取原文
获取原文并翻译 | 示例

摘要

A typical approach to the synthesis/design optimization of energy systems is to only use steady state operation and high efficiency (or low total life cycle cost) at full load as the basis for the synthesis/design. Transient operation as reflected by changes in power demand, shut-down, and start-up are left as secondary tasks to be solved by system and control engineers once the synthesis/design is fixed. However, transient regimes may happen quite often and the system response to them is a critical factor in determining the system's feasibility. Therefore, it is important to consider the system dynamics in the creative process of developing the system.;A decomposition approach for dynamic optimization developed and applied to the synthesis/design and operation/control optimization of a solid oxide fuel cell (SOFC) based auxiliary power unit (APU) is the focus of this doctoral work. Called DILGO (Dynamic Iterative Local-Global Optimization), this approach allows for the decomposed optimization of the individual units (components, sub-systems or disciplines), while taking into account the intermediate products and feedbacks which couple all of the units which make up the overall system. The approach was developed to support and enhance current engineering synthesis/design practices by making possible dynamic modular concurrent system optimization. In addition, this approach produces improvements in the initial synthesis/design state at all stages of the process and allows any level of complexity in the unit's modeling.;DILGO uses dynamic shadow price rates as a basis for measuring the interaction level between units. The dynamic shadow price rate is a representation of the unit's cost rate variation with respect to variations in the unit's coupling functions. The global convergence properties of DILGO are seen to be dependent on the mathematical behavior of the dynamic shadow price rate. The method converges to a "global" (system-level) optimum provided the dynamic shadow price rates are approximately constant or at least monotonic. This is likely to be the case in energy systems where the coupling functions, which represent intermediate products and feedbacks, tend to have a monotonic behavior with respect to the unit's local contribution to the system's overall objective function.;Finally, DILGO is a physical decomposition used to solve system-level as well as unit-level optimization problems. The total system considered here is decomposed into three sub-systems as follows: stack sub-system (SS), fuel processing sub-system (FPS), and the work and air recovery sub-system (WRAS). Mixed discrete, continuous, and dynamic operational decision variables are considered. Detailed thermodynamic, kinetic, geometric, physical, and cost models for the dynamic system are formulated and implemented. All of the sub-systems are modeled using advanced state-of-the-art tools. DILGO is then applied to the dynamic synthesis/design and operation/control optimization of the SOFC based APU using the total life cycle cost as objective function. The entire problem has a total of 120 independent variables, some of which are integer valued and dynamic variables. The solution to the problem requires only 6 DILGO iterations.
机译:能源系统综合/设计优化的典型方法是仅在全负载下使用稳态运行和高效率(或较低的总生命周期成本)作为综合/设计的基础。一旦固定了综合/设计,由电力需求,关闭和启动的变化所反映的瞬态操作将作为系统和控制工程师要解决的次要任务。但是,瞬态可能会经常发生,并且系统对它们的响应是确定系统可行性的关键因素。因此,在系统开发的创新过程中考虑系统动力学很重要。;开发了一种用于动态优化的分解方法,并将其应用于基于固体氧化物燃料电池(SOFC)的辅助设备的合成/设计和操作/控制优化动力单元(APU)是这项博士研究的重点。这种方法称为DILGO(动态迭代局部全局优化),它允许分解单个单元(组件,子系统或学科)的优化,同时考虑中间产品和将组成所有单元的单元耦合起来的反馈整个系统。通过使动态模块化并发系统优化成为可能,开发了该方法来支持和增强当前的工程综合/设计实践。此外,这种方法在过程的所有阶段都改善了初始综合/设计状态,并允许在单元建模中实现任何级别的复杂性。DILGO使用动态影子价格比率作为衡量单元之间交互程度的基础。动态影子价格率是单位成本率相对于单位耦合函数变化的变化的表示。可以看出,DILGO的全局收敛性取决于动态影子价格率的数学行为。只要动态影子价格率近似恒定或至少单调,该方法即可收敛到“全局”(系统级)最优值。在能源系统中可能就是这种情况,其中代表中间产品和反馈的耦合函数倾向于相对于单元对系统整体目标函数的局部贡献具有单调性。最后,DILGO是物理分解用于解决系统级以及单元级优化问题。这里考虑的整个系统分解为三个子系统,如下所示:堆栈子系统(SS),燃料处理子系统(FPS)以及工作和空气回收子系统(WRAS)。考虑混合的离散,连续和动态操作决策变量。制定并实施了针对动态系统的详细热力学,动力学,几何,物理和成本模型。所有子系统均使用先进的先进工具建模。然后,以总生命周期成本为目标函数,将DILGO应用于基于SOFC的APU的动态综合/设计和操作/控制优化。整个问题共有120个独立变量,其中一些是整数值和动态变量。该问题的解决方案仅需要6次DILGO迭代。

著录项

  • 作者

    Rancruel, Diego Fernando.;

  • 作者单位

    Virginia Polytechnic Institute and State University.;

  • 授予单位 Virginia Polytechnic Institute and State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 285 p.
  • 总页数 285
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号