首页> 外文学位 >Modeling and finite element analysis of welding distortions and residual stresses in large and complex structures.
【24h】

Modeling and finite element analysis of welding distortions and residual stresses in large and complex structures.

机译:大型复杂结构中焊接变形和残余应力的建模和有限元分析。

获取原文
获取原文并翻译 | 示例

摘要

Material processing is an important topic in academic research and engineering practices. Its applications, such as welding and laser forming, are widely employed in the fabrication of large structures. However, welding applications may cause undesired permanent distortions and residual stresses in materials. It is highly desired by researchers and engineers to develop efficient numerical methods that have the capability to simulate material processing for a timely prediction of distortions and residual stresses that may be produced.; Finite element analysis of 3D full scale thermo-elasto-plastic material processing has been considered to be computationally expensive and poses challenging difficulties for current available numerical algorithms as well as computer hardware. Tremendous computational costs arise from the fine meshes, small time increments, and nonlinearity involved in this kind of analysis.; The objective of this research is to develop effective and efficient numerical methods and computational techniques that are capable of performing 3D large scale finite element analysis of material processing problems. Parallel computing is first introduced for simulating large scale applications on shared memory computers. The Dual-Primal Finite Element Tearing and Interconnecting method with Reduced Back Substitution and Linear-Nonlinear Analysis (FETI-DP-RBS-LNA) is then proposed to introduce the divide and conquer concept to the simulation of large scale problems and reduce the overall computational costs. Distributed computing is further introduced for the FETI-DP-RBS-LNA algorithm. Message Passing Interface (MPI) is implemented and tested on a distributed PC cluster so that FETI-DP-RBS-LNA receives the benefit of distributed computing. Finally, the partial Cholesky re-factorization scheme is investigated and implemented to improve the computational performance of material processing simulations. This scheme only re-factorizes the nonlinear regions in the structure. Therefore, the overall simulation time can be greatly reduced.
机译:材料加工是学术研究和工程实践中的重要主题。它的应用(例如焊接和激光成型)被广泛用于大型结构的制造中。但是,焊接应用可能会导致不希望的永久变形和材料中的残余应力。研究人员和工程师非常希望开发出有效的数值方法,该方法能够模拟材料加工过程,以便及时预测可能产生的变形和残余应力。 3D全尺寸热弹塑性材料加工的有限元分析被认为在计算上是昂贵的,并且对当前可用的数值算法以及计算机硬件提出了挑战性的困难。这种分析涉及精细的网格,较小的时间增量和非线性,因此会产生巨大的计算成本。这项研究的目的是开发有效和高效的数值方法和计算技术,能够对材料加工问题进行3D大规模有限元分析。首次引入并行计算是为了模拟共享存储计算机上的大规模应用程序。然后提出了一种具有减少的反置换和线性非线性分析的双主有限元撕裂和互连方法(FETI-DP-RBS-LNA),以将分治法概念引入大型问题的仿真中,并减少了总体计算量。费用。还针对FETI-DP-RBS-LNA算法引入了分布式计算。消息传递接口(MPI)在分布式PC群集上实现和测试,因此FETI-DP-RBS-LNA可以受益于分布式计算。最后,研究并实现了部分Cholesky重分解方案,以提高材料加工仿真的计算性能。该方案仅重新分解结构中的非线性区域。因此,总的仿真时间可以大大减少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号