首页> 外文学位 >Quantum computing under real-world constraints: Efficiency of an ensemble quantum algorithm and fighting decoherence by gate design.
【24h】

Quantum computing under real-world constraints: Efficiency of an ensemble quantum algorithm and fighting decoherence by gate design.

机译:在现实世界中的约束下的量子计算:集成量子算法的效率和通过门设计来消除退相干。

获取原文
获取原文并翻译 | 示例

摘要

Quantum algorithms for problems such as integer factorization and database search have spurred great interest in quantum computation. However, the construction of scalable quantum computers has proved to be extremely difficult. Among the challenging requirements that must be fulfilled in the "standard model" of quantum computation, one must be able to initialize qubits into known pure states. In addition, quantum computers must be protected from noise due to unwanted interactions with their environment.; This work is concerned with two theoretical issues motivated by these difficulties. First, I analyze the efficiency of an algorithm for an alternate model for quantum computation that is motivated by bulk nuclear magnetic resonance. In such ensemble systems, the initial state is not a fiducial pure state, but is instead a maximally-mixed density operator. The algorithm that I consider allows one to estimate the free energy of arbitrary spin-1/2 lattice models. To determine the efficiency of this algorithm, I calculate the computation time required to estimate the free energy to bounded error as a function of the lattice size. In the absence of stochastic fluctuations in the measurement output, it is found that the algorithm is efficient. However, evidence is presented that suggests that the algorithm becomes exponentially sensitive to fluctuations as the lattice size increases.; While techniques such as quantum error-correcting codes and decoherence-free subsystem encodings have been devised to mitigate errors due to unwanted environmental couplings, these methods require many additional qubits or complicated encodings. Here, I investigate a simple approach to reduce errors in the quantum search algorithm due to a collective decoherence model. This method takes advantage of the freedom inherent in compiling the search algorithm into fundamental gates. Transition rate calculations and more rigorous quantum master equation simulations are carried out for small-qubit instances to contrast the performance of the original and modified algorithm. It is shown that the expected computational effort can be reduced by 22% for selected five-bit instances of the quantum search algorithm. While this approach does not constitute a general strategy for quantum error-correction, it illustrates the importance of judicious gate design in mitigating decoherence.
机译:解决诸如整数分解和数据库搜索等问题的量子算法引起了人们对量子计算的极大兴趣。但是,事实证明,可伸缩量子计算机的构建非常困难。在量子计算的“标准模型”中必须满足的挑战性要求中,必须能够将量子位初始化为已知的纯态。此外,必须保护量子计算机免受与环境之间有害相互作用的干扰。这项工作涉及由这些困难引起的两个理论问题。首先,我分析了由体核磁共振激发的量子计算替代模型算法的效率。在这样的集成系统中,初始状态不是基准纯状态,而是最大混合密度算符。我考虑的算法允许估算任意自旋1/2晶格模型的自由能。为了确定该算法的效率,我计算了计算所需的计算时间,该时间是晶格尺寸的函数,用于估计边界误差的自由能。在测量输出中不存在随机波动的情况下,发现该算法是有效的。但是,有证据表明,随着晶格尺寸的增加,该算法对波动呈指数敏感。尽管已经设计出诸如量子纠错码和无去相干子系统编码之类的技术来减轻由于不希望的环境耦合引起的误差,但是这些方法需要许多额外的量子比特或复杂的编码。在这里,我研究一种简单的方法来减少归因于相干相干模型的量子搜索算法中的错误。这种方法利用了将搜索算法编译为基本门的固有自由度。对小量子位实例进行了跃迁速率计算和更严格的量子主方程仿真,以对比原始算法和改进算法的性能。结果表明,对于量子搜索算法的选定五位实例,预期的计算量可以减少22%。尽管这种方法不构成量子纠错的一般策略,但它说明了明智的门​​设计在减轻退相干方面的重要性。

著录项

  • 作者

    Master, Cyrus Phiroze.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 155 p.
  • 总页数 155
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号