首页> 外文学位 >Plasma-Enhanced Atomic Layer Deposition of Ruthenium-Titanium Nitride Mixed-Phase Layers for Direct-Plate Liner and Copper Diffusion Barrier Applications.
【24h】

Plasma-Enhanced Atomic Layer Deposition of Ruthenium-Titanium Nitride Mixed-Phase Layers for Direct-Plate Liner and Copper Diffusion Barrier Applications.

机译:用于直接板衬和铜扩散阻挡层应用的钌-氮化钛混合相层的等离子体增强原子层沉积。

获取原文
获取原文并翻译 | 示例

摘要

Current interconnect networks in semiconductor processing utilize a sputtered TaN diffusion barrier, Ta liner, and Cu seed to improve the adhesion, microstructure, and electromigration resistance of electrochemically deposited copper that fills interconnect wires and vias. However, as wire/via widths shrink due to device scaling, it becomes increasingly difficult to have the volume of a wire/via be occupied with ECD Cu which increases line resistance and increases the delay in signal propagation in IC chips. A single layer that could serve the purpose of a Cu diffusion barrier and ECD Cu adhesion promoter could allow ECD Cu to occupy a larger volume of a wire/via, leading to a decrease in line resistance and decrease in signal delay.;Previous work has shown RuTaN, RuWCN, and RuCo films can act as Cu diffusion barriers and be directly platable to thickness of 2-3nm. However, other material selections may prove as effective or possibly better. Mixed-phase films of ruthenium titanium nitride grown by atomic layer deposition (ALD) were investigated for their performance as a Cu diffusion barrier and as a surface for the direct plating of ECD Cu. All Ru was deposited by plasma-enhanced atomic layer deposition (PEALD) while TiN was deposited by either thermal ALD or PEALD. RuTiN, films with thermal ALD TiN and a Ru:Ti of 20:1 showed barrier performance comparable to PVD TaN at 3-4 nm thickness and 15 nm planar films were directly platable. Follow up work is certainly needed for this material set, yet initial results indicate RuTiN could serve as an effective direct plate liner for Cu interconnects.
机译:半导体加工中的当前互连网络利用溅射的TaN扩散势垒,Ta衬里和Cu晶种来提高填充互连线和过孔的电化学沉积铜的附着力,微观结构和抗电迁移性。然而,随着线/通孔宽度由于器件缩放而缩小,越来越难以用ECD Cu占据线/通孔的体积,这增加了线电阻并增加了IC芯片中信号传播的延迟。可以用作铜扩散阻挡层和ECD Cu附着力促进剂的单层可以使ECD Cu占据较大的导线/通孔体积,从而导致线电阻减小和信号延迟减小。如图所示,RuTaN,RuWCN和RuCo膜可以充当Cu扩散阻挡层,并且可以直接电镀到2-3nm的厚度。但是,其他材料选择可能被证明是有效的或可能更好。研究了通过原子层沉积(ALD)生长的钌钛氮化物混合相膜作为铜扩散阻挡层和直接电镀ECD Cu的表面的性能。通过等离子体增强原子层沉积(PEALD)沉积所有Ru,而通过热ALD或PEALD沉积TiN。 RuTiN,具有热ALD TiN和Ru:Ti为20:1的薄膜在3-4 nm厚度下具有与PVD TaN相当的阻挡性能,并且15 nm平面薄膜可直接电镀。此材料组当然需要进行后续工作,但初步结果表明RuTiN可以用作Cu互连的有效直接板衬。

著录项

  • 作者

    Gildea, Adam James.;

  • 作者单位

    State University of New York at Albany.;

  • 授予单位 State University of New York at Albany.;
  • 学科 Nanoscience.;Engineering Materials Science.;Nanotechnology.
  • 学位 M.S.
  • 年度 2013
  • 页码 83 p.
  • 总页数 83
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号