首页> 外文学位 >Numerical modeling of three-phase (gas-liquid-solid) flows with connectivity-free multi-fluid interface treatment and non-boundary-fitted techniques for fluid-structure interactions.
【24h】

Numerical modeling of three-phase (gas-liquid-solid) flows with connectivity-free multi-fluid interface treatment and non-boundary-fitted techniques for fluid-structure interactions.

机译:三相(气-液-固)流的数值模拟,采用无连通性的多流体界面处理和非边界拟合技术进行流固耦合。

获取原文
获取原文并翻译 | 示例

摘要

A gas-liquid-solid multiphase flow is an important physical phenomenon that appears in nature and many engineering applications. Numerical modeling of multiphase flows becomes an essential tool to predict and analyze the corresponding flow and solid behaviors and appropriate interfacial responses, and ultimately to study their underlying mechanisms and physics. However, being widely studied, the development of numerical algorithm for three-phase flows is still a challenging field due to the complex nature of the gas-liquid-solid interactions. In this thesis, a computational frame work to model and simulate gas-liquid-solid three-phase flows is established. A non-boundary-fitted approach is developed to easily and efficiently accommodate the moving interfaces and deforming solid. A background fluid mesh is constructed in the whole domain, whereas the gas-liquid multi-fluid interface and the solid structure are represented independently using connectivity-free interfacial points and an Lagrangian mesh, respectively. The gas-liquid interface and the solid mesh can move freely on the background fluid mesh which is represented using an Eulerian frame of reference, which avoids the re-meshing process and simplifies the computation setup significantly. The gas-liquid interface is treated using the connectivity-free front tracking (CFFT) method. It uses explicit interfacial points to represent the interface without the logical connectivity of the interfacial points, while conserving the total volume. Without any connectivity of the points, the interface topology change can be easily handled by adopting a simple points regeneration scheme. An indicator function is used to identify the appropriate (gas or liquid) properties and surface tension force. The reproducing kernel particle method (RKPM) is introduced to perform more accurate interpolations for indicator calculation. To further enhance the accuracy at the interface for microscopic scale, a dynamic contact line model with rough surface hysteresis is coupled to the CFFT method. It is implemented by reconstructing the contact region of the interface to impose the predicted dynamic contact angle. This feature can help us achieve more accurate interfacial representations when the gas-liquid interface contacts with a solid wall. This model allows us to analyze the bubbles and droplets behaviors near the solid wall boundary. To couple the solid into the gas-liquid multi-fluid system, we adopt the immersed finite element method (IFEM), a non-boundary-fitted approach to treat fluid-solid interactions. The IFEM provides a realistic representation for solid motion and deformation by solving the solid governing equations. The concept of indicator function is again adopted to identify the real and artificial fluids where the solid occupies, which naturally combines the IFEM with the CFFT method for the three-phase representation. The coupling of the two algorithms sets a new computational framework for the gas-liquid-solid interactions, where the dynamics of each individual phase is accurately captured and each interface is clearly represented and predicted. This work provides a new means in predicting and analyzing complex physical phenomena.
机译:气液固多相流是自然界和许多工程应用中出现的重要物理现象。多相流的数值模拟成为预测和分析相应的流和固体行为以及适当的界面反应,并最终研究其潜在机理和物理的必不可少的工具。然而,由于气-液-固相互作用的复杂性,三相流数值算法的发展仍然是一个充满挑战的领域。本文建立了模拟和模拟气液固三相流的计算框架。开发了一种无边界拟合的方法,可以轻松有效地容纳移动界面并变形实体。在整个域中构造了背景流体网格,而分别使用无连通性的界面点和拉格朗日网格分别表示了气-液多流体界面和固体结构。气液界面和实心网格可以在背景流体网格上自由移动,该背景流体网格使用欧拉坐标系表示,从而避免了重新网格化过程并显着简化了计算设置。气液界面使用无连通性前端跟踪(CFFT)方法进行处理。它使用显式界面点表示接口,而没有界面点的逻辑连通性,同时节省了总体积。在没有点的任何连通性的情况下,采用简单的点再生方案就可以轻松地处理接口拓扑更改。指示器功能用于识别适当的(气体或液体)特性和表面张力。引入了再生核粒子法(RKPM)来执行更精确的插值以进行指标计算。为了进一步提高微观尺度界面的精度,将具有粗糙表面滞后的动态接触线模型与CFFT方法耦合。它是通过重建界面的接触区域以施加预测的动态接触角来实现的。当气液界面与固体壁接触时,此功能可以帮助我们获得更准确的界面表示。该模型使我们能够分析固体壁边界附近的气泡和液滴行为。为了将固体耦合到气-液多流体系统中,我们采用了浸没有限元方法(IFEM),这是一种无边界拟合的方法来处理流固耦合。 IFEM通过求解固体控制方程为固体运动和变形提供了逼真的表示。指标函数的概念再次被用来识别固体所占的真实和人造流体,这自然将IFEM与CFFT方法结合起来用于三相表示。两种算法的结合为气-液-固相互作用建立了新的计算框架,其中每个相的动力学都得到了精确捕获,每个界面都得到了清晰表示和预测。这项工作为预测和分析复杂的物理现象提供了新的手段。

著录项

  • 作者

    Wang, Chu.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 129 p.
  • 总页数 129
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号