首页> 外文学位 >Implementation of a Thermodynamic Solver within a Computer Program for Calculating Fission-Product Release Fractions.
【24h】

Implementation of a Thermodynamic Solver within a Computer Program for Calculating Fission-Product Release Fractions.

机译:在计算机程序中用于计算裂变产物释放分数的热力学求解器的实现。

获取原文
获取原文并翻译 | 示例

摘要

During some postulated accidents at nuclear power stations, fuel cooling may be impaired. In such cases, the fuel heats up and the subsequent increased fission-gas release from the fuel to the gap may result in fuel sheath failure. After fuel sheath failure, the barrier between the coolant and the fuel pellets is lost or impaired, gases and vapours from the fuel-to-sheath gap and other open voids in the fuel pellets can be vented. Gases and steam from the coolant can enter the broken fuel sheath and interact with the fuel pellet surfaces and the fission-product inclusion on the fuel surface (including material at the surface of the fuel matrix). The chemistry of this interaction is an important mechanism to model in order to assess fission-product releases from fuel.;Starting in 1995, the computer program SOURCE 2.0 was developed by the Canadian nuclear industry to model fission-product release from fuel during such accidents. SOURCE 2.0 has employed an early thermochemical model of irradiated uranium dioxide fuel developed at the Royal Military College of Canada. To overcome the limitations of computers of that time, the implementation of the RMC model employed lookup tables to pre-calculated equilibrium conditions. In the intervening years, the RMC model has been improved, the power of computers has increased significantly, and thermodynamic subroutine libraries have become available. This thesis is the result of extensive work based on these three factors.;A prototype computer program (referred to as SC11) has been developed that uses a thermodynamic subroutine library to calculate thermodynamic equilibria using Gibbs energy minimization. The Gibbs energy minimization requires the system temperature (T) and pressure (P), and the inventory of chemical elements (n) in the system.;In order to calculate the inventory of chemical elements in the fuel, the list of nuclides and nuclear isomers modelled in SC11 had to be expanded from the list used by SOURCE 2.0. A benchmark calculation demonstrates the improvement in agreement of the total inventory of those chemical elements included in the RMC fuel model to an ORIGEN-S calculation. ORIGEN-S is the Oak Ridge isotope generation and depletion computer program.;The Gibbs energy minimizer requires a chemical database containing coefficients from which the Gibbs energy of pure compounds, gas and liquid mixtures, and solid solutions can be calculated. The RMC model of irradiated uranium dioxide fuel has been converted into the required format.;The Gibbs energy minimizer has been incorporated into a new model of fission-product vaporization from the fuel surface. Calculated release fractions using the new code have been compared to results calculated with SOURCE IST 2.0P11 and to results of tests used in the validation of SOURCE 2.0. The new code shows improvements in agreement with experimental releases for a number of nuclides. Of particular significance is the better agreement between experimental and calculated release fractions for 140La. The improved agreement reflects the inclusion in the RMC model of the solubility of lanthanum (III) oxide (La2O3) in the fuel matrix. Calculated lanthanide release fractions from earlier computer programs were a challenge to environmental qualification analysis of equipment for some accident scenarios. The new prototype computer program would alleviate this concern.;Keywords: Nuclear Engineering; Material Science; Thermodynamics; Radioactive Material, Gibbs Energy Minimization, Actinide Generation and Depletion, FissionProduct Generation and Depletion.
机译:在某些假定的核电站事故中,燃料冷却可能会受到损害。在这种情况下,燃料会变热,随后裂变气体从燃料到间隙的释放增加会导致燃料护套失效。在燃料护套失效后,冷却剂和燃料芯块之间的屏障会丢失或受损,燃料与护套之间的间隙中的气体和蒸汽以及燃料芯块中的其他敞开空隙都可以排出。来自冷却剂的气体和蒸汽可以进入破裂的燃料套,并与燃料芯块表面以及燃料表面上的裂变产物夹杂物相互作用(包括燃料基体表面的物质)。这种相互作用的化学性质是建模的重要机制,以评估燃料中裂变产物的释放。从1995年开始,加拿大核工业开发了计算机程序SOURCE 2.0,以对此类事故中燃料裂变产物的释放进行建模。 。 SOURCE 2.0采用了加拿大皇家军事学院开发的辐射二氧化铀燃料的早期热化学模型。为了克服当时计算机的局限性,RMC模型的实现采用了查找表来预先计算出平衡条件。在随后的几年中,RMC模型得到了改进,计算机的功能得到了显着提高,并且热力学子例程库也已可用。本文是基于这三个因素进行大量工作的结果。;已开发出原型计算机程序(称为SC11),该程序使用热力学子例程库通过吉布斯能量最小化计算热力学平衡。吉布斯能量的最小化要求系统温度(T)和压力(P)以及系统中化学元素的存量(n)。为了计算燃料中化学元素的存量,需要核素和核素清单SC11中建模的异构体必须从SOURCE 2.0使用的列表中扩展。基准计算表明,RMC燃料模型中包含的这些化学元素的总库存与ORIGEN-S计算的一致性得到了改善。 ORIGEN-S是Oak Ridge同位素的生成和消耗计算机程序。Gibbs能量最小化器需要一个化学数据库,该数据库包含系数,可以从中计算纯化合物,气体和液体混合物以及固溶体的Gibbs能量。辐照过的二氧化铀燃料的RMC模型已转换为所需格式。吉布斯能量最小化器已纳入燃料表面裂变产物汽化的新模型中。使用新代码计算的释放分数已与使用SOURCE IST 2.0P11计算的结果以及用于验证SOURCE 2.0的测试结果进行了比较。新的代码显示出与许多核素的实验版本一致的改进。特别重要的是140La的实验释放分数和计算出的释放分数之间的更好一致性。改进的协议反映了RMC模型中包括氧化镧(III)(La2O3)在燃料基质中的溶解度。从早期的计算机程序中计算得出的镧系元素释放分数,对于某些事故场景下的设备环境合格分析是一个挑战。新的原型计算机程序将减轻这种担忧。材料科学;热力学;放射性物质,吉布斯能量最小化,Act系元素的产生和消耗,裂变产物的产生和消耗。

著录项

  • 作者

    Barber, Duncan Henry.;

  • 作者单位

    Royal Military College of Canada (Canada).;

  • 授予单位 Royal Military College of Canada (Canada).;
  • 学科 Engineering Nuclear.;Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 450 p.
  • 总页数 450
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号