首页> 外文学位 >Performance evaluation of an advanced air-fuel ratio controller on a stationary, rich-burn natural gas engine.
【24h】

Performance evaluation of an advanced air-fuel ratio controller on a stationary, rich-burn natural gas engine.

机译:先进的空燃比控制器在固定式富燃天然气发动机上的性能评估。

获取原文
获取原文并翻译 | 示例

摘要

The advent of an era of abundant natural gas is making it an increasingly economical fuel source against incumbents such as crude oil and coal, in end-use sectors such as power generation, transportation and industrial chemical production, while also offering significant environmental benefits over these incumbents. Equipment manufacturers, in turn, are responding to widespread demand for power plants optimized for operation with natural gas. In several applications such as distributed power generation, gas transmission, and water pumping, stationary, spark-ignited, natural gas fueled internal combustion engines (ICEs) are the power plant of choice (over turbines) owing to their lower equipment and operational costs, higher thermal efficiencies across a wide load range, and the flexibility afforded to end-users when building fine-resolution horsepower topologies: modular size increments ranging from 100 kW – 2 MW per ICE power plant compared to 2 – 5 MW per turbine power plant.;Under the U.S. Environment Protection Agency's (EPA) New Source Performance Standards (NSPS) and Reciprocating Internal Combustion Engine National Emission Standards for Hazardous Air Pollutants (RICE NESHAP) air quality regulations, these natural gas power plants are required to comply with stringent emission limits, with several states mandating even stricter emissions norms.;In the case of rich-burn or stoichiometric natural gas ICEs, very high levels of sustained emissions reduction can be achieved through exhaust after-treatment that utilizes Non Selective Catalyst Reduction (NSCR) systems. The primary operational constraint with these systems is the tight air-fuel ratio (AFR) window of operation that needs to be maintained if the NSCR system is to achieve simultaneous reduction of carbon monoxide (CO), nitrogen oxides (NOx), total hydrocarbons (THC), volatile organic compounds (VOCs), and formaldehyde (CH 2O). Most commercially available AFR controllers utilizing lambda (oxygen) sensor feedback are unable to maintain engine AFR within the required range owing to drift in sensor output over time.;In this thesis, the emissions compliance performance of an AFR controller is evaluated over a 6-month period on an engine driving a gas compressor in an active natural gas production field. This AFR controller differentiates itself from other commercially available products by employing a lambda sensor that has been engineered against sensor drift, making it better suited for natural gas engine applications. Also included in this study are the controller's responses to transient loads, diurnal performance, adaptability to seasonal variations in ambient temperature, fuel quality variations (in wellhead gas), engine health considerations for proper AFR control, and controller calibration sensitivity when replacing lambda sensors.;During the first three months of operation and subsequent diurnal tests, the controller's performance as a multi-point AFR control system was consistent, demonstrating appropriate AFR adjustments to variation in engine operation, over a wide range of ambient conditions, despite high consumption rate of engine lubrication oil. For the remainder the test, the high levels of lubrication oil consumption, compromised the ability to verify controller performance.
机译:天然气时代的到来使之成为石油,天然气等最终用户在发电,运输和工业化学生产等最终用途领域中日益经济的燃料来源,同时在这些方面也提供了显着的环境效益任职者。反过来,设备制造商正在响应对针对天然气操作而优化的发电厂的广泛需求。在分布式发电,气体传输和抽水等多种应用中,由于其较低的设备和运行成本,固定式,火花点火式,天然气燃料内燃发动机(ICE)是首选的发电厂(优于涡轮机),在较宽的负载范围内具有更高的热效率,并且在构建高分辨率的马力拓扑时为最终用户提供了灵活性:模块化尺寸的增加范围从每个ICE电厂100 kW – 2 MW,相比每个涡轮机电厂2 – 5 MW。 ;根据美国环境保护局(EPA)的新排放源性能标准(NSPS)和往复式内燃机国家有害空气污染物排放标准(RICE NESHAP)空气质量法规,这些天然气电厂必须遵守严格的排放限值,其中有几个州规定了甚至更严格的排放标准。;对于富燃或化学计量的天然气ICE,可以通过利用非选择性催化还原(NSCR)系统的排气后处理来实现持续减排。这些系统的主要操作限制条件是:如果NSCR系统要同时还原一氧化碳(CO),氮氧化物(NOx)和总碳氢化合物(AFR),则必须维持严格的空燃比(AFR)操作窗口THC),挥发性有机化合物(VOC)和甲醛(CH 2O)。由于传感器输出随时间的漂移,大多数利用λ(氧气)传感器反馈的市售AFR控制器无法将发动机AFR维持在要求的范围内。在本论文中,AFR控制器在6-活跃的天然气生产领域中驱动气体压缩机的发动机的发动机使用期为一个月。该AFR控制器通过采用针对传感器漂移而设计的lambda传感器,与其他市售产品区分开来,使其更适合天然气发动机应用。这项研究还包括控制器对瞬态负载的响应,昼夜性能,对环境温度的季节性变化的适应性,燃料质量变化(井口气体中),适当AFR控制的发动机健康考虑因素以及在更换Lambda传感器时控制器的校准灵敏度。 ;在运行的前三个月和随后的日间测试中,该控制器作为多点AFR控制系统的性能始终如一,证明了在很大的环境条件下,尽管发动机的消耗率很高,但仍可以对发动机运行的变化进行适当的AFR调整。发动机润滑油。在其余测试中,高水平的润滑油消耗损害了验证控制器性能的能力。

著录项

  • 作者单位

    Colorado State University.;

  • 授予单位 Colorado State University.;
  • 学科 Engineering Mechanical.;Engineering Petroleum.;Energy.
  • 学位 M.S.
  • 年度 2013
  • 页码 180 p.
  • 总页数 180
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号