首页> 外文学位 >A Novel, Systematic Multiscale Modeling Method to Calculate Coarse-Grained Parameters for the Simulation of Biomolecules.
【24h】

A Novel, Systematic Multiscale Modeling Method to Calculate Coarse-Grained Parameters for the Simulation of Biomolecules.

机译:一种新颖的系统多尺度建模方法,可计算粗颗粒参数以模拟生物分子。

获取原文
获取原文并翻译 | 示例

摘要

We developed new intermediate resolution implicit solvent models for lipids, "LIME" and DNA molecules, "DIME," designed for use with discontinuous molecular dynamics (DMD) simulations. A multi-scale modeling approach was used to extract both the LIME and DIME parameters from explicit solvent atomistic simulations. We applied LIME to study the spontaneous formation of lipid bilayers, the behavior of mixed lipid systems at different pH values and the interaction between membranes and nanoparticles. DIME was used to investigate the structural properties of DNA and the process by which two DNA strands hybridize in solution.;In LIME, 14 coarse-grained sites that are classified as 1 of 6 types represent DPPC. DMD simulations performed on a random solution of DPPC lipids resulted in the spontaneous formation of a defect free bilayer in less than 4 hours. The speed at which the formation of the bilayer was observed is close to an order of magnitude faster than the fastest reported speed for a coarse-grained, implicit solvent model. The bilayer formed quantitatively reproduces the main structural properties (e.g. area per lipid, bilayer thickness, bond order parameters) that are observed experimentally. In addition, the bilayer transitions from a liquid-crystalline phase to a tilted gel phase when the temperature is reduced. Transbilayer movement of a lipid from the bottom leaflet to the top leaflet is observed when the temperature is increased.;Our initial LIME model was extended to include the description of the geometry and energetics of DPPC, 1,2-distearoyl-sn-glycero-3-phospho-L-serine (DSPS) and 1,2-dihenarachidoyl-sn-glycero-3-phosphocholine (21PC) at both neutral and low pH at 310K. In the model, 14 coarse-grained sites represent DPPC, 17 coarse-grained sites represent DSPS and 18 coarse-grained sites represent 21PC. Each of these coarse-grained sites is classified as 1 of 10 types. LIME/DMD simulations performed on bilayers containing different compositions of DPPC/DSPS and 21PC/DSPS showed similar heterogeneous domain formation at both a neutral and low pH.;We demonstrate how the combination of DMD and LIME can be used to model the interaction between lipid membranes and nanoparticles of different sizes, densities and hydrophobicities. In this work we run "proof of concept" simulations to demonstrate that our model can be evolved to examine more specific nanoparticle-membrane systems. We studied the wrapping process for nanoparticles with diameters from 5A to 100A and found that DPPC bilayers do not wrap nanoparticles with a diameter less than 20A. Instead, we found that these particles become embedded in the bilayer surface where they can easily interact with the hydrophilic head groups of the lipid molecules. We also investigated the interaction between hydrophobic nanoparticles with diameters from 5A to 40A. According to our results, the hydrophobic nanoparticles do not undergo the wrapping process; instead they directly penetrate the membrane and embed themselves within the inner hydrophobic core of the bilayers. The density of the hydrophilic and hydrophobic nanoparticles did not appear to affect the way in which they interact with the membranes.;In DIME, three coarse-grained sites are used to represent each nucleotide (one for each sugar, phosphate and base molecule). Each of these coarse-grained sites is classified as 1 of 6 types for sugar, phosphate, cytosine, guanine, adenine and thymine. DMD simulations performed on an initial random configuration of two single-stranded Dickerson-Drew dodecamer chains resulted in the formation of a double-helical structure within approximately 0.17 CPU hours. An alternative procedure for calculating the square-well width for each pair of interaction sites, which involves the second virial coefficient, was also investigated. Simulations run using this second set of parameters did not result in the spontaneous formation of a double helix even though the double helix remained stable at low temperature.
机译:我们针对脂质,“ LIME”和DNA分子“ DIME”开发了新的中等分辨率隐式溶剂模型,该模型设计用于不连续分子动力学(DMD)模拟。多尺度建模方法用于从显式溶剂原子模拟中提取LIME和DIME参数。我们应用LIME研究脂质双层的自发形成,混合脂质系统在不同pH值下的行为以及膜与纳米颗粒之间的相互作用。 DIME用于研究DNA的结构特性以及两条DNA链在溶液中杂交的过程。在LIME中,14个粗粒位点被归类为6种类型中的1种代表了DPPC。在DPPC脂质的随机溶液上进行的DMD模拟导致在不到4小时的时间内自发形成无缺陷的双层。观察到双层形成的速度比粗粒度隐式溶剂模型的最快报告速度快一个数量级。定量形成的双层再现了通过实验观察到的主要结构性质(例如,每个脂质的面积,双层厚度,键序参数)。另外,当温度降低时,双层从液晶相转变为倾斜的凝胶相。当温度升高时,观察到了脂质从底部小叶到顶部小叶的双分子层运动。;我们扩展了最初的LIME模型,包括DPPC的几何构型和能量学描述,1,2-二硬脂酰-sn-甘油-在310K的中性和低pH值条件下,均具有3-磷酸-L-丝氨酸(DSPS)和1,2-二henarachidoyl-sn-甘油-3-磷酸胆碱(21PC)。在该模型中,14个粗粒位代表DPPC,17个粗粒位代表DSPS,18个粗粒位代表21PC。这些粗粒度站点中的每一个都被分类为10种类型中的1种。在包含不同成分的DPPC / DSPS和21PC / DSPS的双层上进行的LIME / DMD模拟在中性和低pH下均显示出相似的异质结构域形成;我们证明了DMD和LIME的组合如何用于建模脂质之间的相互作用不同大小,密度和疏水性的膜和纳米颗粒。在这项工作中,我们运行“概念验证”模拟,以证明我们的模型可以演化为检查更具体的纳米颗粒-膜系统。我们研究了直径从5A到100A的纳米颗粒的包裹过程,发现DPPC双层不会包裹直径小于20A的纳米颗粒。相反,我们发现这些粒子嵌入了双层表面,在其中它们可以轻松地与脂质分子的亲水头基相互作用。我们还研究了直径为5A至40A的疏水性纳米颗粒之间的相互作用。根据我们的结果,疏水性纳米颗粒没有经过包裹过程;相反,它们直接穿透膜并嵌入双层的内部疏水核中。亲水性和疏水性纳米粒子的密度似乎并未影响它们与膜相互作用的方式。在DIME中,三个粗粒位用于表示每个核苷酸(每个糖,磷酸和碱基分子一个)。这些粗粒位点的每一个均被分类为糖,磷酸盐,胞嘧啶,鸟嘌呤,腺嘌呤和胸腺嘧啶的6种类型中的1种。对两条单链Dickerson-Drew dodecamer链的初始随机配置执行的DMD仿真导致在大约0.17 CPU小时内形成了双螺旋结构。还研究了用于计算每对相互作用位点的方孔宽度的替代方法,该方法涉及第二维里系数。使用第二组参数运行的模拟不会导致自发形成双螺旋,即使双螺旋在低温下仍保持稳定。

著录项

  • 作者

    Curtis, Emily Marie.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 183 p.
  • 总页数 183
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号