首页> 外文学位 >A neuro-fuzzy approach to classification of human non-synonymous SNPs based upon computational geometry.
【24h】

A neuro-fuzzy approach to classification of human non-synonymous SNPs based upon computational geometry.

机译:一种神经模糊方法,用于基于计算几何对人类非同义SNP进行分类。

获取原文
获取原文并翻译 | 示例

摘要

The ability to predict the effect of non-synonymous SNPS (nsSNPs) on protein function is important for the success of disease-association studies. Accepting that most diseases are caused by variations in protein expression, folding and/or stability, nsSNPs are the most likely candidates to affect proteins. Sequence-based methods use changes at well-conserved positions to predicted deleterious SNPs, but require a set of not always available orthologous sequences. On the other hand, current structure-based rules strongly rely upon empirical observations. Further, current tools for nsSNP classification using methods such as decision trees, support vector machine and artificial neural network (ANN) provide the user with binary Boolean logic outcome, which is not always sufficient for assessment of nsSNP impacts. Thus there is a need for more comprehensive SNP classification tools.; We propose a statistical geometry approach based on Delaunay tessellation to classify disease-associated (daSNPs) and neutral (ntSNPs). Delaunay tessellation provides an objective definition of the nearest neighbors for analysis of protein structure. The composition of simplices generated as a result of tessellation is analyzed in terms of statistical likelihood of occurrence of the four nearest neighbor amino acid residues for all observed quadruplet combinations of the twenty natural amino acids. With this approach, an objective set of characteristics which differentiate daSNPs from ntSNPs have been identified. The most powerful classification characteristic is the difference in total potential between the native protein and its polymorphic variant.; To be able to predict the effect of non-synonymous SNPs on protein function we constructed neuro-fuzzy inference system. As an input vector we use the characteristics obtained through Delaunay tessellation and conservation assessment. The merger of ANN with fuzzy logic (FL) yields a system that can learn and is amenable to human perception. In the case of nsSNPs, we show that the FL approach built upon rules derived from statistical geometry leads to a marked improvement in the accuracy of prediction for disease alleles, and provides a comprehensible linguistic determination of output membership. This approach allows us to assess the disease potential of nsSNPs and to select the most promising nsSNPs for further investigation.
机译:预测非同义SNPS(nsSNPs)对蛋白质功能的影响的能力对于疾病关联研究的成功至关重要。 nsSNPs承认大多数疾病是由蛋白质表达,折叠和/或稳定性的变化引起的,因此最有可能影响蛋白质。基于序列的方法使用保守位置上的变化来预测有害的SNP,但需要一组不总是可用的直系同源序列。另一方面,当前基于结构的规则强烈依赖于经验观察。此外,当前使用决策树,支持向量机和人工神经网络(ANN)等方法进行nsSNP分类的工具为用户提供了二进制布尔逻辑结果,但这并不总是足以评估nsSNP影响。因此,需要更全面的SNP分类工具。我们提出了一种基于Delaunay细分的统计几何方法,以将疾病相关(daSNPs)和中性(ntSNPs)分类。 Delaunay细化为蛋白质结构分析提供了最近邻的客观定义。对于所有观察到的二十种天然氨基酸的四联体组合,根据发生镶嵌细分的结果生成的单纯形的成分,根据出现四个最邻近氨基酸残基的统计可能性进行分析。通过这种方法,已经确定了区分daSNP和ntSNP的客观特征。最有力的分类特征是天然蛋白质及其多态性变体之间总潜能的差异。为了能够预测非同义SNP对蛋白质功能的影响,我们构建了神经模糊推理系统。作为输入向量,我们使用通过Delaunay细分和保存评估获得的特征。 ANN与模糊逻辑(FL)的合并产生了一个可以学习并适合人类感知的系统。在nsSNPs的情况下,我们表明,基于统计几何派生的规则建立的FL方法导致疾病等位基因的预测准确性显着提高,并提供了输出成员的可理解的语言确定。这种方法使我们能够评估nsSNPs的潜在疾病,并选择最有希望的nsSNPs进行进一步研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号