首页> 外文学位 >Exploring visible-light-responsive photocatalysts for water splitting based on novel band-gap engineering strategies.
【24h】

Exploring visible-light-responsive photocatalysts for water splitting based on novel band-gap engineering strategies.

机译:基于新型带隙工程策略,探索可见光响应光解水光催化剂。

获取原文
获取原文并翻译 | 示例

摘要

The increasing demand for renewable energy is driving innovations in both science and technology. Hydrogen has been broadly identified as a potential clean energy carrier due to its high energy capacity (enthalpy of combustion is as high as 286 kJ/mol) and environmental friendliness (the only product after burning is water). Meanwhile, solar energy is renewable, abundant and easily available. Solar-driven H2 production from water has therefore attracted global attention in the past decades since the first report of photoelectrochemical (PEC) water splitting based on an n-type TiO2 photoanode. Many semiconductor-based materials have been synthesized and studied for their photocatalytic or PEC performance. Among them, visible-light-active photocatalytsts are more promising since the energy of the visible-light region takes up a large proportion of the whole solar spectrum. Herein, we found two novel groups of compounds, e.g. copper borates and boron carbides. We investigated the origins and performances of their photocatalytic water splitting under visible light irradiation. It is found that the visible light activities of the two groups are resulted from different band-gap engineering mechanisms. For the two copper borates compounds, e.g. CuB2O4 and Cu3B2O6, we found that the visible light activity is from the intrinsic midgap states in the two compounds. Both midgap states serve as an electron acceptor level, but they function very differently in the two copper borates. For CuB2O4, the midgap states facilitate the visible light absorption for photocatalytic water splitting, while for Cu3B2O6, the midgap states trap electrons and reduce the photocatalytic activity. For the two boron carbides, e.g. B4.3C and B13C2, they exhibit efficient photocatalytic H2 evolution and PEC H2 evolution as a stable photocathode under visible light irradiation. Interestingly, it is found that the inherent defects and structural distortions in B4.3C cause a continuum downshift of its conduction band (CB) edge that facilitates visible-light absorption and water splitting based on density functional theory (DFT) calculations. In B13C2, however, the more complicated structural defects and distortions result in a large number of midgap states between the CB and the valence band (VB), which reduce its overall photocatalytic and PEC water splitting efficiency by promoting charge recombination.
机译:对可再生能源的需求不断增长,正在推动科学技术的创新。由于氢的高能量容量(燃烧的焓高达286 kJ / mol)和环境友好(燃烧后唯一的产物是水),氢已被广泛认为是潜在的清洁能源载体。同时,太阳能是可再生的,丰富的并且容易获得。自从第一个基于n型TiO2光电阳极进行光电化学(PEC)水分解的报告以来,在过去的几十年中,由太阳能驱动的水制氢已引起了全球关注。已经合成并研究了许多基于半导体的材料的光催化或PEC性能。其中,可见光活性光催化剂更具前景,因为可见光区的能量占整个太阳光谱的很大一部分。在本文中,我们发现了两组新颖的化合物,例如硼酸铜和碳化硼。我们研究了它们在可见光照射下光催化水分解的起源和性能。发现两组的可见光活动是由不同的带隙工程机制引起的。对于两种硼酸铜化合物,例如我们发现CuB2O4和Cu3B2O6的可见光活性来自两种化合物的固有中能隙态。两种中间能隙状态都用作电子受体能级,但它们在两种硼酸铜中的功能却大不相同。对于CuB2O4,中间能隙态促进可见光吸收,从而分解光催化水,而对于Cu3B2O6,中间能隙态捕获电子并降低光催化活性。对于两种碳化硼,例如B4.3C和B13C2,它们在可见光照射下表现出有效的光催化H2释放和PEC H2释放,作为稳定的光阴极。有趣的是,发现B4.3C中的固有缺陷和结构变形会导致其导带(CB)边缘连续下降,这有利于基于密度泛函理论(DFT)计算的可见光吸收和水分解。但是,在B13C2中,更复杂的结构缺陷和变形导致CB和价带(VB)之间存在大量的中间能隙状态,从而通过促进电荷重组降低了其总体光催化效率和PEC水分解效率。

著录项

  • 作者

    Liu, Jikai.;

  • 作者单位

    University of California, Riverside.;

  • 授予单位 University of California, Riverside.;
  • 学科 Chemistry.;Physical chemistry.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 129 p.
  • 总页数 129
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号