首页> 外文学位 >Medical Device Design for Improved Cardiopulmonary Bypass Perfusion and Hemodynamic Optimality during Cardiovascular procedures using Image-Based Computational Fluid Dynamics.
【24h】

Medical Device Design for Improved Cardiopulmonary Bypass Perfusion and Hemodynamic Optimality during Cardiovascular procedures using Image-Based Computational Fluid Dynamics.

机译:使用基于图像的计算流体力学在心血管手术过程中改善心肺旁路灌注和血流动力学优化的医疗设备设计。

获取原文
获取原文并翻译 | 示例

摘要

Each year 1 in 100 children are born with a congenital heart defect, representing 40,000 children each year in the US and 1,300,000 children worldwide with clinically significant congenital heart disease (CHD). Cardiopulmonary bypass (CPB) is the fundamental tool of the pediatric surgeon to realize complex cardiovascular repairs in pediatric and neonatal CHD patients. The core focus of this thesis represents a methodical computational and experimental approach for CPB perfusion control which focuses on aortic cannula tip design and jet flows, with specific application to neonatal / pediatric interventions. The overarching goal of re-engineering the aortic cannula tip is to enable physiologic cardiac output during CPB at low driving pressure gradients while maintaining low jet exit velocities, therefore mitigating potential vascular/blood damage while simultaneously satisfying the prevailing focus on engineering favorable pressure-flow characteristics. The primary strategy of studies presented in this thesis has been to apply new knowledge on aortic outflow cannula jet flow regimes derived using high-performance computational fluid dynamics (CFD) as well as shape-sensitivity studies in designing the next generation of aortic outflow cannula tips. The results of this novel design approach have been encouraging and the predicted outcomes from studies have provided insight into engineering tiny hemodynamically efficient arterial cannulae based upon the novel paradigm of jet flows, which may further have an impact on design of blood handling vascular access devices in general.;In addition to computational modeling, design and evaluation of novel neonatal/pediatric sized vascular-access medical devices, this thesis also discusses a host of clinically relevant applications of CFD to in-silico vascular flow evaluation and pre-surgical planning, in the context of pediatric as well as adult vascular anatomies. The general applicability of this work transcends medical device design and establishes methodologies for quantitative evaluation of cardiovascular medical images for morphology, function and flow, followed by high performance CFD simulation driven modeling of vascular flows in normal or pathological vascular anatomies. The latter is presented with application to in-silico pre-surgical 'what-if analyses to quantitatively evaluate surgical options, coupled shape-morphing to determine optimal intervention strategies and finally in monitoring postsurgical outcomes.
机译:每年,每100名儿童中就有1名先天性心脏病出生,在美国每年代表40,000名儿童,而在全球范围内,全世界有1,300,000名儿童患有先天性心脏病(CHD)。体外循环(CPB)是儿科外科医生在儿科和新生儿CHD患者中实现复杂的心血管修复的基本工具。本论文的核心重点是CPB灌注控制的有条理的计算和实验方法,该方法侧重于主动脉插管尖端设计和射流,特别适用于新生儿/儿科干预。重新设计主动脉插管尖端的总体目标是在CPB期间以低驱动压力梯度实现生理性心输出量,同时保持较低的射流出口速度,从而减轻潜在的血管/血液损害,同时满足对工程有利压力流的普遍关注特征。本文提出的研究的主要策略是将新知识应用于使用高性能计算流体力学(CFD)得出的主动脉流出套管射流情况以及形状敏感性研究,以设计下一代主动脉流出套管尖端。这种新颖的设计方法的结果令人鼓舞,并且研究的预期结果为基于新颖的射流范式工程微型血液动力学有效的动脉插管提供了见识,这可能进一步影响血液处理血管通路装置的设计。除了新颖的新生儿/小儿大小的血管通路医疗器械的计算模型,设计和评估之外,本文还讨论了CFD在计算机内血管血流评估和术前计划中的许多临床相关应用。儿科以及成人血管解剖学的背景。这项工作的普遍适用性超越了医疗设备的设计,建立了定量评估心血管医学图像的形态,功能和血流的方法,随后是高性能CFD仿真驱动的正常或病理性血管解剖学中的血流建模。后者被应用于计算机前术中“假设分析”以定量评估手术方案,结合形状变形来确定最佳干预策略,并最终监测术后结果。

著录项

  • 作者单位

    Carnegie Mellon University.;

  • 授予单位 Carnegie Mellon University.;
  • 学科 Engineering Biomedical.;Health Sciences Radiology.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 379 p.
  • 总页数 379
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号