首页> 外文学位 >I/O Design and Core Power Management Issues in Heterogeneous Multi/Many-Core System-on-Chip.
【24h】

I/O Design and Core Power Management Issues in Heterogeneous Multi/Many-Core System-on-Chip.

机译:异构多/多核片上系统中的I / O设计和核心电源管理问题。

获取原文
获取原文并翻译 | 示例

摘要

Since dark silicon and the end of multicore scaling, multi/many-core system-on-a-chip (SoC) platform designs nowadays are facing some conflicting issues regarding product development. One is induced by increasing design complexity and another is induced by decreasing time-to-market. Hence, designers are seeking a more efficient and reliable methodology in order to design complex multimillion gate SoC under such harsh conditions.;In particular, the complexity of a generic pin control block in multimedia SoC which implements input/output (I/O) paths for off-chip communication has increased exponentially in recent years. Accordingly, the possibility of introducing human errors in designing such block has grown. Operation of generic-pin control block needs to be validated with a top-level RTL from the early stages of design, which correctly checks full-chip interface. However, generic-pin control block has inherent several design issues since function registers and multi-I/O paths are usually fixed in the relatively late stages of design. Also, the role of a generic pin control block that shares limited pins causes frequent changes in pin assignment. Therefore, current design approaches of a generic pin control block are no longer adequate to meet the challenges of design productivity, design reusability, and shorter time-to-market for design. And, this results in many possible human errors when using a traditional RTL description.;As a response to this problem, we developed a design automation based approach to reduce the possibility of human errors. In the case study presented, we succeeded in auto-generating a generic pin control block in multimedia SoC platforms which has more than 400 general purpose I/O interfaces including both input and output, as well as 1200 PAD pins. Ultimately, we reduced the amount of manual description for generating a generic pin control block by a whopping 98%.;The Overhead of Data Preparation (ODP) is very concerned in the future design of multi/many-core systems on the same chip. Therefore, we considered this issue under the extended Amdahl's law and apply it to three "traditional" mult/many-core systems scenarios such as homogeneous symmetric, asymmetric, and dynamic. In addition, we expanded it toward two new scenarios spanning heterogeneous and dynamic CPU-GPU multi/many-core systems. Based on our evaluation, we found that potential innovations in heterogeneous system architecture are indispensable to decrease ODP.;Furthermore, providing a solution of low power consumption and the trade off a small decrease in performance and throughput are the main challenges in designing future heterogeneous multi/many-core architecture on a single chip. Our design incorporates heterogeneous cores representing different points in the power-performance design space during an applications execution. Under this circumstance, system software dynamically chooses the most appropriate core to meet specific performance and power requirements. As a response to this finding, we have presented a power-aware core management scheme through tightly-coupled hardware and software interaction: (1) heuristic thread consolidation scheme in software level, (2) 3-bit core power control scheme in hardware level. It is based on efficient methods of the core power management on heterogeneous multi/many-core architecture as a mechanism to reduce huge clock cycles as a latency when a core is powered down to up. Operation is based on distinct scenarios by 3-bit core power control scheme through 5 statuses switching such as active, hot, cold, idle, and powered down. In addition, this kind of status switching is exactly triggered by referencing two information. One is the collected process ID information which is allocated by OS scheduler. Another is the decision information of heuristic thread consolidation scheme to maximize power-performance efficiency. Experiments prove that the power-performance efficiency of our model presented reduces power on average by 2.3% compared to a system with an efficient power-aware policy and by up to 15% with respect to the basic policy.;At the aspect of energy-efficiency on the same chip, we have proposed a performance-energy efficiency analytical model for the future integrated heterogeneous parallel multi/many-core systems which is promising to be used for big data applications. The model extends the traditional computing-centric model by considering ODP which can not be neglected in heterogenous multi/many-core systems anymore. The analysis has clearly shown that higher parallelism gained from either computation or data preparation brings greater energy-efficiency. Improving the performance-energy efficiency of data preparation is another promising approach to affect power consumption. Therefore, more informed tradeoffs should be taken when we design a modern heterogeneous multi-many-core systems within limited budget of energy envelope.
机译:由于黑硅技术以及多核扩展的终结,因此当今的多/多核片上系统(SoC)平台设计面临与产品开发有关的一些矛盾问题。一种是由于增加了设计复杂性,另一种是由于缩短了产品上市时间。因此,设计人员正在寻求一种更高效,更可靠的方法,以便在如此严酷的条件下设计复杂的数百万门SoC。尤其是实现输入/输出(I / O)路径的多媒体SoC中通用引脚控制模块的复杂性近年来,片外通信技术的应用呈指数增长。因此,在设计这样的块时引入人为错误的可能性增加了。从设计的早期阶段起,就需要使用顶级RTL来验证通用引脚控制模块的操作,以正确检查全芯片接口。但是,由于功能寄存器和多I / O路径通常在设计的相对较晚阶段就固定了,因此通用引脚控制模块固有的几个设计问题。同样,共享有限引脚的通用引脚控制块的作用也会导致引脚分配频繁变化。因此,通用引脚控制块的当前设计方法不再足以应付设计生产率,设计可重复使用性以及缩短设计上市时间的挑战。并且,当使用传统的RTL描述时,这会导致许多可能的人为错误。为了解决此问题,我们开发了一种基于设计自动化的方法来减少人为错误的可能性。在介绍的案例研究中,我们成功地在多媒体SoC平台中自动生成了通用的引脚控制模块,该模块具有400多个通用I / O接口,包括输入和输出以及1200个PAD引脚。最终,我们将生成通用引脚控制块的手册描述数量减少了98%。数据准备开销(ODP)在同一芯片上的多核/多核系统的未来设计中非常重要。因此,我们根据扩展的阿姆达尔定律考虑了此问题,并将其应用于三种“传统”多核/多核系统方案,例如均质对称,非对称和动态。此外,我们将其扩展到了两个新的场景,它们涵盖了异构和动态CPU-GPU多/多核系统。根据我们的评估,我们发现异构系统体系结构中潜在的创新对于降低ODP必不可少。此外,提供低功耗解决方案以及性能和吞吐量的小幅下降是设计未来异构多核系统的主要挑战。 / man-core体系结构在单个芯片上。我们的设计结合了异构内核,这些异构内核代表了在应用程序执行期间电源性能设计空间中的不同点。在这种情况下,系统软件会动态选择最合适的内核,以满足特定的性能和功耗要求。作为对这一发现的回应,我们通过紧密耦合的硬件和软件交互提出了一种具有功耗意识的内核管理方案:(1)软件级的启发式线程合并方案,(2)硬件级的3位内核电源控制方案。它基于异构多/多核体系结构上核心电源管理的有效方法,作为一种机制,可在内核掉电时减少大量时钟周期(作为延迟)。通过3位核心电源控制方案并通过5种状态切换(例如活动,热,冷,空闲和掉电),根据不同的场景进行操作。另外,这种状态切换是通过引用两个信息来精确触发的。一个是收集的进程ID信息,由OS调度程序分配。另一个是启发式线程合并方案的决策信息,以最大化电源性能效率。实验证明,与具有有效功率感知策略的系统相比,我们提出的模型的功率性能效率平均可降低2.3%的功率,而相对于基本策略而言,则可降低多达15%的功率。为了提高效率,我们针对未来的集成异构并行多核/多核系统提出了一种性能-能量效率分析模型,该模型有望用于大数据应用。该模型通过考虑ODP扩展了传统的以计算为中心的模型,而ODP在异构多核/多核系统中已不容忽视。分析清楚地表明,从计算或数据准备中获得的更高并行度带来了更高的能源效率。提高数据准备的性能-能源效率是影响功耗的另一种有前途的方法。因此,当我们在有限的能源预算范围内设计现代的异构多核系统时,应该采取更明智的权衡方法。

著录项

  • 作者

    Kim, Myoung-Seo.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Computer science.;Computer engineering.;Electrical engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 145 p.
  • 总页数 145
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号