首页> 外文学位 >A three-dimensional acoustic emission based microcrack source localization method and its biomechanical application.
【24h】

A three-dimensional acoustic emission based microcrack source localization method and its biomechanical application.

机译:基于三维声发射的微裂纹源定位方法及其生物力学应用。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation, a 3D Acoustic emission (AE) based microcrack source localization method for the detection of the microcracks in complex structures was presented. The major component of the method was the development of a variable velocity model algorithm. This algorithm had the advantage of smaller computational residuals, faster convergence, and relatively reliable results over current widely used constant velocity model algorithm. In this work, the variable velocity model algorithm was validated through theoretical and experimental approaches. To illustrate the proposed technique, a biomechanical application was presented using cemented total hip arthroplasty (THA) models. This application investigated the influence of the stem surface texture on microcrack activities.; In the variable velocity model algorithm, the velocity model was achieved in two steps. The first step was assigning each sensor an initial signal velocity based on its coordinates relative to an estimated microcrack. The second step was adjusting the initial velocity based on the computational residual.; The theoretical validation of the variable velocity model algorithm showed that the variable velocity model can achieve an event residual RES that is smaller than the constant velocity model. The variable velocity model algorithm was also validated through a series of pencil lead break tests and fatigue tests performed on a cemented THA specimen. The results indicated that the variable velocity model algorithm locates the fatigue microcracks more accurately than the constant velocity model algorithm.; In the biomechanical application of the 3D AE based microcrack source localization method, the AE results demonstrated that stem surface roughness is an important parameter to determine the fatigue performances of the cemented THA specimens.; The main contribution of this dissertation was the development of the 3D AE based microcrack source localization method. Compared to current widely used constant velocity model algorithm, the variable velocity model algorithm was capable of improving the microcrack localization accuracy when the specimen is a complex structure. This method showed the potential for broader applications that are difficult to study using current AE techniques.
机译:本文提出了一种基于3D声发射的微裂纹源定位方法,用于复杂结构中的微裂纹检测。该方法的主要组成部分是变速模型算法的开发。与目前广泛使用的等速模型算法相比,该算法具有计算残差较小,收敛速度更快以及结果相对可靠的优点。在这项工作中,通过理论和实验方法验证了变速模型算法。为了说明提出的技术,提出了使用骨水泥全髋关节置换术(THA)模型的生物力学应用。该申请研究了茎表面纹理对微裂纹活性的影响。在可变速度模型算法中,速度模型分两个步骤完成。第一步是根据相对于估计的微裂纹的坐标为每个传感器分配初始信号速度。第二步是根据计算残差调整初始速度。变速模型算法的理论验证表明,变速模型可以实现小于恒速模型的事件残差RES。变速模型算法还通过一系列在胶结THA试样上进行的铅笔芯折断测试和疲劳测试进行了验证。结果表明,可变速度模型算法比恒定速度模型算法能够更精确地定位疲劳微裂纹。在基于3D AE的微裂纹源定位方法的生物力学应用中,AE结果表明杆表面粗糙度是确定胶结THA试样疲劳性能的重要参数。本文的主要贡献是基于3D AE的微裂纹源定位方法的发展。与目前广泛使用的等速模型算法相比,当样本为复杂结构时,可变速模型算法能够提高微裂纹的定位精度。这种方法显示了潜在的广泛应用,而使用当前的自动曝光技术很难研究。

著录项

  • 作者

    Li, Jihui.;

  • 作者单位

    The University of Memphis.;

  • 授予单位 The University of Memphis.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 103 p.
  • 总页数 103
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号