首页> 外文学位 >Combining multivariate adaptive regression splines with a response surface methodology for simulation-based design optimization.
【24h】

Combining multivariate adaptive regression splines with a response surface methodology for simulation-based design optimization.

机译:将多元自适应回归样条曲线与响应面方法相结合,可进行基于仿真的设计优化。

获取原文
获取原文并翻译 | 示例

摘要

Design optimization is an iterative process involving the modification of specified design variables in an effort to improve the cost, weight or capabilities of a structure while meeting all engineering requirements. The process can be supported by building and testing physical prototypes, using computer simulation, or both. When designing large, complex or costly structures, physical prototypes are not always an option. For such cases, finite element models (FEM) are an efficient alternative. Finite element analysis is a process by which computerized mathematical models are used to evaluate the reaction of a physical component or assembly to its environment. FEM apply integral and differential calculus equations to measure the relationship between load and deflection of the elements when force, heat, or vibration is applied. Due to the computational expense of finite element analysis, researchers continue to look for ways to reduce the number of model evaluations necessary to identify an exact, or approximate the global, optimal solution.; This dissertation develops the use of multivariate adaptive regression splines (MARS) with the successive response surface methodology (SRSM), referred to as MARS/RSM, and a space-filling design of experiments to approximate the highly nonlinear response surface normally associated with structural design. MARS uses piecewise continuous linear approximations to fit the response surface, allowing variables to act locally rather than globally, potentially reducing the number of variables to be tested in areas where the optimum is thought to exist through the MARS approximation. SRSM is used to change the size and location of the test region based on the proximity and degree of oscillation of the best response from successive batch samples.; The MARS/RSM procedure is applied to seven common optimization test functions to demonstrate its model fitting properties as compared to neural networks and generalized additive models, as well as its optimization properties compared to simulated annealing and genetic algorithms. Additionally, two finite element vehicle impact example problems are solved and compared to the results achieved using LS-OPT meta-modeling optimization techniques. Finally, MARS/RSM is used to identify the best design for a novel automobile hood with the objective of reducing the head injury criterion (HIC).
机译:设计优化是一个反复的过程,涉及修改指定的设计变量,以在满足所有工程要求的同时提高结构的成本,重量或功能。可以通过构建和测试物理原型,使用计算机仿真或同时使用两者来支持该过程。在设计大型,复杂或昂贵的结构时,物理原型并非总是一种选择。对于此类情况,有限元模型(FEM)是有效的替代方法。有限元分析是使用计算机数学模型评估物理组件或组件对其环境的反应的过程。当施加力,热或振动时,FEM应用积分和微积分方程来测量单元的载荷与挠度之间的关系。由于有限元分析的计算量很大,研究人员一直在寻找减少确定精确或近似全局最优解所需的模型评估次数的方法。本文开发了多变量自适应回归样条(MARS)和连续响应面方法(SRSM)的使用,称为MARS / RSM,并进行了空间填充设计以近似通常与结构设计相关的高度非线性响应面。 MARS使用分段连续线性逼近来拟合响应表面,从而允许变量在局部而不是全局范围内起作用,从而有可能减少通过MARS逼近认为存在最优值的区域中要测试的变量的数量。 SRSM用于根据连续批次样品中最佳响应的接近程度和振荡程度来更改测试区域的大小和位置。将MARS / RSM程序应用于七个常见的优化测试函数,以证明其与神经网络和广义加性模型相比的模型拟合特性,以及与模拟退火和遗传算法相比的优化特性。此外,解决了两个有限元车辆碰撞示例问题,并将它们与使用LS-OPT元建模优化技术获得的结果进行了比较。最后,MARS / RSM用于确定新型汽车引擎盖的最佳设计,目的是减少头部受伤标准(HIC)。

著录项

  • 作者

    Crino, Scott T.;

  • 作者单位

    University of Virginia.;

  • 授予单位 University of Virginia.;
  • 学科 Engineering System Science.; Operations Research.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 187 p.
  • 总页数 187
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 系统科学;运筹学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号