首页> 外文学位 >Insights in understanding the regulation of methionine biosynthesis; Engineering alfalfa (Medicago sativa) for increased methionine content.
【24h】

Insights in understanding the regulation of methionine biosynthesis; Engineering alfalfa (Medicago sativa) for increased methionine content.

机译:理解蛋氨酸生物合成调控的见解;工程苜蓿(苜蓿)提高蛋氨酸含量。

获取原文
获取原文并翻译 | 示例

摘要

Alfalfa is a forage legume used as a principal feed source for livestock throughout the world because it provides much of the protein required in animal diets. Alfalfa, however, is deficient in the essential amino acid, methionine (Met). One strategy of improving the Met content of alfalfa has involved introducing the corn genes encoding the Met-rich and rumen stable beta- and delta-zein seed storage proteins. However, preliminary results indicate that the synthesis of the zein proteins in alfalfa leaves is limited by the availability of free Met. Our primary research goal is to increase Met levels in alfalfa by genetically modifying Met metabolic pathway. In an effort to better understand how the pathway is regulated in alfalfa, we have isolated cDNA clones of the key genes involved in Met metabolism from alfalfa and studied their expression in the leaves and nodules of alfalfa. Cystathionine gamma-synthase (CGS), S-adenosylmethionine synthase (SAMS), and Threonine synthase (TS) are all expressed at higher levels in nodules compared to leaves, suggesting a higher level of Met metabolism in this specialized organ. We also found that Met S-methyltransferase (MMT), the enzyme responsible for Met to S-methylmethionine (SMM) conversion, is expressed predominately in the leaves of alfalfa. Expression of an Arabidopsis CGS transgene in alfalfa caused downregulation of the endogenous CGS gene in the leaves, but not the nodules of transgenic plants. There was also increased expression of MMT in the leaves of CGS overexpressing alfalfa that accompanied an increase in SMM. In order to further modulate the Met metabolic pathway for increased synthesis of Met, we expressed a mutant form of the CGS transgene that lacked a feedback regulatory control mechanism to express the CGS gene at higher levels. We also expressed an antisense TS gene in alfalfa in an effort to downregulate this competing enzyme to favor Met biosynthesis over that of Thr. Metabolite data from these transgenic plants showed that carbon flux into Met biosynthesis can be increased. However, free Met remained low in transgenic plants likely due to an increased flow toward the synthesis of SMM and SAM.
机译:苜蓿是一种饲料用豆类,在全世界范围内被用作牲畜的主要饲料来源,因为它提供了动物饮食中所需的许多蛋白质。然而,苜蓿缺乏必需氨基酸蛋氨酸(蛋氨酸)。改善苜蓿中Met含量的一种策略涉及引入编码富含Met和瘤胃稳定的β-和δ-玉米醇溶蛋白种子贮藏蛋白的玉米基因。但是,初步结果表明,苜蓿叶片中玉米醇溶蛋白的合成受到游离Met可用性的限制。我们的主要研究目标是通过基因修饰Met代谢途径来提高苜蓿中Met的水平。为了更好地了解苜蓿的途径是如何调控的,我们从苜蓿中分离了参与Met代谢的关键基因的cDNA克隆,并研究了它们在苜蓿叶和根瘤中的表达。与叶子相比,在结节中胱硫醚γ-合酶(CGS),S-腺苷甲硫氨酸合酶(SAMS)和苏氨酸合酶(TS)均以较高的水平表达,表明该专门器官中的Met代谢水平较高。我们还发现,Met S-甲基转移酶(MMT)是负责将Met转化为S-甲基甲硫氨酸(SMM)的酶,主要在苜蓿叶中表达。紫花苜蓿中拟南芥CGS转基因的表达引起叶片中内源CGS基因的下调,但未引起转基因植物的结节。伴随SMM增加,过表达苜蓿CGS的叶片中MMT表达也增加。为了进一步调节Met代谢途径以增加Met的合成,我们表达了CGS转基因的突变形式,该突变形式缺乏反馈调节控制机制来以更高的水平表达CGS基因。我们还在苜蓿中表达了一个反义TS基因,以试图下调这种竞争性酶,从而使Met生物合成优于Thr。这些转基因植物的代谢物数据表明,进入Met生物合成的碳通量可以增加。然而,游离Met在转基因植物中仍然很低,这可能是由于向SMM和SAM合成的流量增加了。

著录项

  • 作者

    Barrow, Matthew J.;

  • 作者单位

    New Mexico State University.;

  • 授予单位 New Mexico State University.;
  • 学科 Biology Molecular.;Agriculture Plant Culture.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 116 p.
  • 总页数 116
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号