首页> 外文学位 >Finite element analysis of composite sheet piles subjected to uniform load and harsh environments.
【24h】

Finite element analysis of composite sheet piles subjected to uniform load and harsh environments.

机译:承受均匀载荷和恶劣环境的复合板桩的有限元分析。

获取原文
获取原文并翻译 | 示例

摘要

Glass Fibre Reinforced Plastic (GFRP) composite structures are increasingly used in waterfront and marine environments due to their corrosion resistance. While the GFRP materials have demonstrated excellent tensile capacities, they also present quite low elastic moduli compared to steel. Consequently, local buckling and excessive deflection are always performance-limiting factors in design of thin-walled composite structures that use low-tech FRP.; The research reported herein is focused on the buckling and deformation analysis of a pultruded sheet pile wall subjected to uniformly distributed load and harsh environmental exposures. Prior to structural analysis, material properties of the composite sheet pile were determined by coupon tests. A finite element ABAQUS model was introduced and validated by comparison with full-scale experimental test data. The prebuckling, buckling and postbuckling behaviour were evaluated and the failure mode identified. In order to enhance the load bearing capacity and reduce the deflection of the sheet pile panel, new profiles were proposed: the purpose was to increase the local buckling load and enhance the stiffness. Adding stiffeners at the junctions between the different section plates appeared to be efficient.; In order to study the durability of the FRP sheet piles under different service conditions, the effects of five environmental exposures on the structural performances were studied: they were freezing, freezing/thawing, wet environment, wet and freezing and wet and freezing/thawing conditions. The elastic moduli were found to be unaffected whereas reductions in the strength were observed. As a result, there was no noticeable change in the buckling load and deflection but significant decrease in ultimate failure load. Maximum loss in load capacity due to moisture uptake and freeze/thaw cycles was found to be about 23%.
机译:玻璃纤维增​​强塑料(GFRP)复合结构由于其耐腐蚀性而越来越多地用于海滨和海洋环境。尽管GFRP材料具有出色的拉伸能力,但与钢相比,它们的弹性模量也很低。因此,局部屈曲和过度挠曲始终是使用低技术FRP的薄壁复合结构设计中的性能限制因素。本文报道的研究集中在承受均布载荷和恶劣环境暴露的拉挤板桩墙的屈曲和变形分析上。在结构分析之前,通过试样试验确定复合板桩的材料性能。引入了有限元ABAQUS模型,并通过与全面的实验测试数据进行比较来进行验证。评估了屈曲前,屈曲和后屈曲的行为,并确定了失效模式。为了提高承重能力并减少板桩面板的挠度,提出了新的型材:目的是增加局部屈曲载荷并提高刚度。在不同型材之间的连接处添加加强筋似乎是有效的。为了研究玻璃纤维板桩在不同使用条件下的耐久性,研究了五种环境暴露对结构性能的影响:冻结,冻结/融化,潮湿环境,潮湿和冻结以及潮湿和冻结/融化条件。发现弹性模量不受影响,但是观察到强度降低。结果,屈曲载荷和挠度没有明显变化,但最终破坏载荷却大大降低。发现由于水分吸收和冷冻/解冻循环而导致的负载能力的最大损失为约23%。

著录项

  • 作者

    Darchis, Fabien.;

  • 作者单位

    McGill University (Canada).;

  • 授予单位 McGill University (Canada).;
  • 学科 Engineering Civil.
  • 学位 M.Eng.
  • 年度 2006
  • 页码 108 p.
  • 总页数 108
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号