首页> 外文学位 >Modeling shock wave propagation in discrete Nickel/Aluminum powder mixtures.
【24h】

Modeling shock wave propagation in discrete Nickel/Aluminum powder mixtures.

机译:模拟离散镍/铝粉末混合物中的冲击波传播。

获取原文
获取原文并翻译 | 示例

摘要

The focus of this work is on the modeling and simulation of shock wave propagation in reactive metal powder mixtures. Reactive metal systems are non-explosive, solid-state materials that release chemical energy when subjected to sufficiently strong stimuli. Shock loading experiments have demonstrated that ultra-fast chemical reactions can be achieved in certain micron-sized metal powder mixtures. However, the mechanisms of rapid mixing that drive these chemical reactions are currently unclear. The goal of this research is to gain an understanding of the shock-induced deformation that enables these ultra-fast reactions. The problem is approached using direct numerical simulation. In this work, a finite element (FE) model is developed to simulate shock wave propagation in discrete particle mixtures. This provides explicit particle-level resolution of the thermal and mechanical fields that develop in the shock wave. The Ni/Al powder system has been selected for study. To facilitate mesoscale FE simulation, a new dislocation-based constitutive model has been developed to address the viscoplastic deformation of fcc metals at very high strain rates (>105 s-1). Six distinct initial configurations of the Ni/Al powder system have been simulated to quantify the effects of powder configuration (e.g., particle size, phase morphology, and constituent volume fractions) on deformation in the shock wave. Results relevant to the degree of shock-induced mixing in the Ni/Al powders are presented, including specific analysis of the thermodynamic state and microstructure of the Ni/Al interfaces that develop during wave propagation. Finally, it is shown that velocity fluctuations at the Ni/Al interfaces (which arise due to material heterogeneity) may serve to fragment the particles down to the nanoscale, and thus provide an explanation of ultra-fast chemical reactions in these material systems.
机译:这项工作的重点是对反应性金属粉末混合物中冲击波传播的建模和仿真。活性金属系统是非爆炸性的固态材料,当受到足够强烈的刺激时会释放化学能。冲击载荷实验表明,在某些微米尺寸的金属粉末混合物中可以实现超快化学反应。但是,目前尚不清楚驱动这些化学反应的快速混合机理。这项研究的目的是要了解使这些超快速反应发生的激振变形。使用直接数值模拟来解决该问题。在这项工作中,开发了一个有限元(FE)模型来模拟冲击波在离散颗粒混合物中的传播。这提供了在冲击波中产生的热和机械场的明确的粒子级分辨率。选择了镍/铝粉末系统进行研究。为了促进中尺度有限元模拟,已经开发了一种新的基于位错的本构模型来解决fcc金属在非常高的应变速率(> 105 s-1)下的粘塑性变形。已对Ni / Al粉末系统的六个不同的初始构型进行了模拟,以量化粉末构型(例如粒径,相形态和组成体积分数)对冲击波变形的影响。提出了与镍/铝粉末中的冲击诱导混合程度有关的结果,包括对波传播过程中形成的镍/铝界面的热力学状态和微观结构的具体分析。最后,结果表明,Ni / Al界面处的速度波动(由于材料的不均匀性而产生)可将颗粒破碎至纳米级,从而为这些材料系统中的超快速化学反应提供了解释。

著录项

  • 作者

    Austin, Ryan A.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Mechanical.;Engineering Materials Science.;Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 204 p.
  • 总页数 204
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号