首页> 外文学位 >Laboratory and field tests of multiple corrosion protection systems for reinforced concrete bridge components and 2205 pickled stainless steel.
【24h】

Laboratory and field tests of multiple corrosion protection systems for reinforced concrete bridge components and 2205 pickled stainless steel.

机译:钢筋混凝土桥梁构件和2205酸洗不锈钢的多重腐蚀防护系统的实验室和现场测试。

获取原文
获取原文并翻译 | 示例

摘要

Multiple corrosion protection systems for reinforcing steel in concrete and the laboratory and field test methods used to compare these systems are evaluated. The systems include conventional steel, epoxy-coated reinforcement (ECR), ECR with a primer containing microencapsulated calcium nitrite, multiple coated reinforcement with a zinc layer underlying DuPont 8-2739 epoxy, ECR with a chromate pretreatment to improve adhesion between the epoxy and the steel, two types of ECR with high adhesion coatings produced by DuPont and Valspar, 2205 pickled stainless steel, concrete with water-cement ratios of 0.45 and 0.35, and three corrosion inhibitors (DCI-S, Rheocrete 222+, and Hycrete). The rapid macrocell test, three bench-scale tests (Southern Exposure, cracked beam, and ASTM G 109 tests), and a field test are used to evaluate the corrosion protection systems. The linear polarization resistance test is used to determine microcell corrosion activity. An economic analysis is performed to find the most cost-effective corrosion protection system. Corrosion performance of 2205 pickled stainless steel is evaluated for two bridges, the Doniphan County Bridge and Mission Creek Bridge in Kansas. The degree of correlation between results obtained with the Southern Exposure, cracked beam, and rapid macrocell tests is determined based on the results from a study by Balma et al. (2005).; In uncracked mortar and concrete containing corrosion inhibitors, total corrosion losses are lower than observed at the same water-cement ratios in concrete with no inhibitors. In cracked concrete, however, the presence of corrosion inhibitors provides no or, at best, very limited protection to reinforcing steel. In uncracked concrete with a water-cement ratio of 0.35, corrosion losses are generally lower than observed at a water-cement ratio of 0.45. In cracked concrete, a lower water-cement ratio provides only limited or no additional corrosion protection.; Compared to conventional ECR, ECR with a primer containing microencapsulated calcium nitrite shows improvement in corrosion resistance in uncracked concrete with a w/c ratio of 0.35. At a higher w/c ratio (0.45), however, the primer provides corrosion protection for only a limited time.; The three types of ECR with increased adhesion show no consistent improvement in corrosion resistance when compared to conventional ECR. The multiple coated reinforcement exhibits total corrosion losses between 1.09 and 14.5 times of the losses for conventional ECR. Corrosion potentials, however, show that the zinc provides protection to the underlying steel. A full evaluation of the system must await the end of the tests when the bars can be examined.; Microcell corrosion losses measured with the linear polarization resistance test shows good correlation with macrocell corrosion losses obtained with the Southern Exposure and cracked beam tests.; An economic analysis shows that, for the systems evaluated in the laboratory, the lowest cost option is provided by a 230-mm concrete deck reinforced with the following steels (all have the same cost): conventional ECR, ECR with a primer containing calcium nitrite, multiple coated reinforcement, or any of the three types of ECR with increased adhesion.; Corrosion potential mapping results show that no corrosion activity is observed for either bridge deck. To date, the 2205p stainless steel has exhibited excellent corrosion performance.; Total corrosion losses in the Southern Exposure and cracked beam tests at either 70 or 96 weeks are appropriate to evaluate the corrosion performance of corrosion protection systems. For the current comparisons, the rapid macrocell test was better at identifying differences between corrosion protection systems than either of the bench-scale tests.; Key words. chlorides, concrete, corrosion, corrosion inhibitor, epoxy-coated reinforcement, linear polarization resistance, multiple corrosion protection systems, potential, stainless steel reinforceme
机译:评估了用于混凝土中钢筋加固的多种腐蚀防护系统以及用于比较这些系统的实验室和现场测试方法。该系统包括常规钢,环氧涂层增强材料(ECR),带有包含微囊化亚硝酸钙的底漆的ECR,在杜邦8-2739环氧树脂下面带有锌层的多层涂层增强材料,带有铬酸盐预处理的ECR,以改善环氧树脂和涂料之间的附着力。钢,杜邦公司和威士伯公司生产的两种类型的具有高附着力涂层的ECR,2205酸洗不锈钢,水灰比为0.45和0.35的混凝土以及三种腐蚀抑制剂(DCI-S,Rheocrete 222+和Hycrete)。快速宏单元测试,三个基准规模测试(Southern Exposure,破裂光束和ASTM G 109测试)以及现场测试用于评估腐蚀防护系统。线性极化电阻测试用于确定微孔腐蚀活性。进行经济分析以找到最具成本效益的腐蚀防护系统。对堪萨斯州的Doniphan County大桥和Mission Creek大桥两座桥梁的2205酸洗不锈钢的腐蚀性能进行了评估。根据Balma等人的研究结果,确定了南部曝光,裂化光束和快速宏单元测试获得的结果之间的相关程度。 (2005)。在未开裂的含缓蚀剂的砂浆和混凝土中,总腐蚀损失要比不加缓蚀剂的混凝土在相同水灰比下所观察到的要低。然而,在开裂的混凝土中,缓蚀剂的存在对增强钢没有提供保护,或者最多只能提供非常有限的保护。在水灰比为0.35的未开裂混凝土中,腐蚀损失通常低于水灰比为0.45时观察到的腐蚀损失。在开裂的混凝土中,较低的水灰比只能提供有限的腐蚀保护,或者不能提供额外的腐蚀保护。与传统的ECR相比,带有含微囊化亚硝酸钙的底漆的ECR在w / c比为0.35的情况下在未破裂的混凝土中显示出改善的耐腐蚀性。然而,在较高的w / c比(0.45)下,底漆只能在有限的时间内提供腐蚀保护。与传统的ECR相比,三种具有增加的附着力的ECR的耐腐蚀性没有得到一致的改善。多层涂层增强材料的总腐蚀损失为传统ECR的1.09到14.5倍。但是,腐蚀电位表明锌为基础钢提供了保护。当可以检查钢筋时,必须等待系统的全面评估。用线性极化电阻测试测得的微孔腐蚀损失与通过Southern Exposure和裂化束试验获得的大孔腐蚀损失具有良好的相关性。经济分析表明,对于在实验室中评估的系统,成本最低的选择是由230毫米的混凝土甲板提供,该甲板用以下钢材加固(所有成本均相同):常规ECR,带亚硝酸钙底漆的ECR ,多层涂覆的增强材料或三种类型的ECR(具有增加的附着力)。腐蚀电位测绘结果表明,任一桥面均未观察到腐蚀活动。迄今为止,2205p不锈钢具有出色的腐蚀性能。在南部暴露和裂痕试验中,在70或96周的总腐蚀损失适合评估腐蚀防护系统的腐蚀性能。对于当前的比较,快速宏单元测试在识别腐蚀防护系统之间的差异方面比任何一种台式测试都更好。关键字氯化物,混凝土,腐蚀,缓蚀剂,环氧涂层增强材料,线性极化电阻,多重腐蚀保护系统,电位,不锈钢增强材料

著录项

  • 作者

    Guo, Guohui.;

  • 作者单位

    University of Kansas.$bCivil, Environmental & Architectural Engineering.;

  • 授予单位 University of Kansas.$bCivil, Environmental & Architectural Engineering.;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 865 p.
  • 总页数 865
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号