首页> 外文学位 >Step and flash imprint lithography: Fabrication of patterned media for extremely high density magnetic data storage devices.
【24h】

Step and flash imprint lithography: Fabrication of patterned media for extremely high density magnetic data storage devices.

机译:分步和快速压印光刻:用于超高密度磁性数据存储设备的图案化介质的制造。

获取原文
获取原文并翻译 | 示例

摘要

Currently the data storage industry is facing huge challenges with respect to the conventional method of recording data known as longitudinal magnetic recording. This technology is fast approaching a fundamental physical limit, known as the superparamagnetic limit. A unique way of deferring the superparamagnetic limit incorporates the patterning of magnetic media. This method exploits the use of lithography tools to predetermine the areal density. Various nanofabrication schemes are employed to pattern the magnetic material are Focus Ion Beam (FIB), E-beam Lithography (EBL), UV-Optical Lithography (UVL), Self-assembled Media Synthesis and Nanoimprint Lithography (NIL). Although there are many challenges to manufacturing patterned media, the large potential gains offered in terms of areal density make it one of the most promising new technologies on the horizon for future hard disk drives.;Thus, this dissertation contributes to the development of future alternative data storage devices and deferring the superparamagnetic limit by designing and characterizing patterned magnetic media using a novel nanoimprint replication process called "Step and Flash Imprint lithography". As opposed to hot embossing and other high temperature-low pressure processes, SFIL can be performed at low pressure and room temperature.;Initial experiments carried out, consisted of process flow design for the patterned structures on sputtered Ni-Fe thin films. The main one being the defectivity analysis for the SFIL process conducted by fabricating and testing devices of varying feature sizes (50 nm to 1 mum) and inspecting them optically as well as testing them electrically. Once the SFIL process was optimized, a number of Ni-Fe coated wafers were imprinted with a template having the patterned topography. A minimum feature size of 40 nm was obtained with varying pitch (1:1, 1:1.5, 1:2, and 1:3). The Characterization steps involved extensive SEM study at each processing step as well as Atomic Force Microscopy (AFM) and Magnetic Force Microscopy (MFM) analysis.
机译:当前,相对于传统的称为纵向磁记录的数据记录方法,数据存储行业面临着巨大的挑战。该技术正在快速接近基本物理极限,即超顺磁极限。推迟超顺磁极限的独特方法包括磁介质的图案化。该方法利用光刻工具来预先确定面密度。聚焦离子束(FIB),电子束光刻(EBL),紫外光学光刻(UVL),自组装介质合成和纳米压印光刻(NIL)等各种纳米加工方案可用于对磁性材料进行图案化。尽管制造图案介质面临许多挑战,但在面密度方面提供的巨大潜在收益使其成为未来硬盘驱动器上最有前途的新技术之一。因此,本论文为未来替代方法的发展做出了贡献数据存储设备,并通过使用称为“步进和闪存压印光刻”的新型纳米压印复制工艺来设计和表征带图案的磁性介质,从而延缓超顺磁极限。与热压花和其他高温低压工艺相反,SFIL可以在低压和室温下进行。初始实验包括对溅射的Ni-Fe薄膜上的图案结构进行工艺设计。主要的一项是对SFIL工艺的缺陷率分析,方法是制造和测试不同特征尺寸(50 nm至1 mum)的器件,并对其进行光学检查和电测试。一旦优化了SFIL工艺,就在许多镀有Ni-Fe的晶片上压印了具有图案化外形的模板。以不同的间距(1:1、1:1.5、1:2和1:3)获得40 nm的最小特征尺寸。表征步骤涉及在每个处理步骤中进行的大量SEM研究以及原子力显微镜(AFM)和磁力显微镜(MFM)分析。

著录项

  • 作者

    Joshi, Nikhil.;

  • 作者单位

    Florida International University.;

  • 授予单位 Florida International University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 90 p.
  • 总页数 90
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号