首页> 外文学位 >Self-assembly and nanofabrication approaches towards photonics and plasmonics: Part I: Directed assembly of inorganic nanostructures through chemical and biomimetic templating. Part II: Fabrication of plasmon resonant structures for surface-enhanced sensing and fluorescence.
【24h】

Self-assembly and nanofabrication approaches towards photonics and plasmonics: Part I: Directed assembly of inorganic nanostructures through chemical and biomimetic templating. Part II: Fabrication of plasmon resonant structures for surface-enhanced sensing and fluorescence.

机译:自组装和纳米制造方法的光子学和等离激元学:第一部分:通过化学和仿生模板技术直接组装无机纳米结构。第二部分:用于表面增强传感和荧光的等离子体共振结构的制造。

获取原文
获取原文并翻译 | 示例

摘要

Applications of inorganic nanostructures in sensing and optoelectronics are limited by the methods currently available to spatially organize them into desired configurations on solid supports. To address these challenges, a method combining "top-down" lithography and "bottom-up" self-assembly was employed to fabricate nanostructured systems using organic, inorganic and biological building blocks. Lithographic techniques, such as electron beam, colloidal and soft lithography, were used to pattern functional organic molecules and genetically engineered peptides on Au, SiO2/Si, mica and glass substrates with feature sizes ranging from sub-100nm to microscale over a large surface area (1--5 cm2). These surfaces present chemical functionalities or biomolecular recognition to direct the self-assembly of Au nanoparticles and CdSe-ZnS core-shell quantum dots into well-defined arrays in a site-specific, parallel manner. In addition to the lateral ordering imposed by these templates, placement of quantum dots on patterned Ag and Au nanostructures was controlled vertically through layer-by-layer assembly of molecular spacers. This allowed the construction of tunable arrays of quantum dots with surface-plasmon-enhanced fluorescence. In addition to the directed self-assembly of inorganic nanostructures, a novel nanofabrication technique was also developed to generate a new class of periodically arrayed plasmon resonant structures with unique topographical characteristics for ultra-sensitive surface-enhanced molecular sensing.
机译:无机纳米结构在传感和光电子学中的应用受到当前可用于将它们在固体载体上空间组织成所需构型的方法的限制。为了解决这些挑战,采用了一种结合了“自上而下”光刻和“自下而上”自组装的方法,以使用有机,无机和生物构件来制造纳米结构系统。使用光刻技术,例如电子束,胶体和软光刻技术,在Au,SiO2 / Si,云母和玻璃基板上对功能性有机分子和基因工程肽进行图案化,其特征尺寸范围从小于100nm到大范围的微米(1--5平方厘米)。这些表面具有化学功能或生物分子识别功能,可以以位点特异性,平行的方式将Au纳米颗粒和CdSe-ZnS核-壳量子点的自组装引导到明确定义的阵列中。除了这些模板所施加的横向排序之外,还通过分子间隔物的逐层组装来垂直控制量子点在图案化的Ag和Au纳米结构上的放置。这允许构建具有表面等离激元增强的荧光的量子点的可调阵列。除了无机纳米结构的定向自组装以外,还开发了一种新颖的纳米制造技术来生成一类具有独特形貌特征的周期排列的等离振子共振结构,用于超灵敏的表面增强型分子传感。

著录项

  • 作者

    Zin, Melvin T.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 277 p.
  • 总页数 277
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号