首页> 外文学位 >Transition metals in multicrystalline silicon solar cells: Understanding the nature, origins, and impacts of metal contamination to minimize its influence on solar cell performance.
【24h】

Transition metals in multicrystalline silicon solar cells: Understanding the nature, origins, and impacts of metal contamination to minimize its influence on solar cell performance.

机译:多晶硅太阳能电池中的过渡金属:了解金属污染的性质,来源和影响,以最大程度地减少对太阳能电池性能的影响。

获取原文
获取原文并翻译 | 示例

摘要

A comprehensive investigation of transition metal impurities in multicrystalline silicon (mc-Si) for solar cell applications is herein detailed. A suite of synchrotron-based analytical X-ray microprobe techniques was employed to characterize the chemical and elemental natures, spatial and size distributions, and recombination activities of metal-rich particles in a range of me-Si materials. Two types of metal-rich particle are typically detected in me-Si: metal silicide nanoprecipitates, and metal-rich inclusions up to tens of microns in size, frequently in an oxidized chemical state. Examination of numerous mc-Si materials yields insights into universal physical principles governing the behavior of metals in me-Si, e.g., the strong interactions between metals and certain types of structural defects, and the dependence of the spatial distribution of a given metal on its diffusivity and solubility. Differences in distribution between mc-Si materials can be explained largely by differences in crystal growth conditions, feedstock purity, and structural defect type and density.; Based on these observations, studies were conducted to determine the effects of several high-temperature processing steps on metal impurities. The final metal distribution (and hence, device impact) is found to be a strong function of processing temperature and cooling rate: fast cools favor homogeneous metal distributions that strongly decrease conversion efficiencies, whereas slow cools allow metal impurities to diffuse to and amass at the most energetically favorable sites, improving material quality elsewhere. Based on these observations, methods are proposed to engineer metallic impurities into less recombination-active states by manipulating their spatial distributions and chemical states, thus reducing their detrimental effects on solar cell performance.
机译:本文详细介绍了用于太阳能电池应用的多晶硅(mc-Si)中的过渡金属杂质。一套基于同步加速器的分析X射线微探针技术用于表征一系列me-Si材料中富金属颗粒的化学和元素性质,空间和尺寸分布以及重组活性。在me-Si中通常会检测到两种类型的富金属颗粒:金属硅化物纳米沉淀和尺寸高达数十微米的富金属夹杂物,通常处于氧化化学状态。对大量mc-Si材料的检查可以深入了解控制me-Si中金属行为的通用物理原理,例如,金属与某些类型的结构缺陷之间的强相互作用以及给定金属在其上的空间分布依赖性扩散性和溶解性。 mc-Si材料之间分布的差异可以用晶体生长条件,原料纯度以及结构缺陷类型和密度的差异来解释。基于这些观察结果,进行了研究以确定几个高温处理步骤对金属杂质的影响。发现最终的金属分布(以及因此对器件的影响)是加工温度和冷却速率的重要函数:快速冷却有利于均匀的金属分布,这会严重降低转化效率,而缓慢冷却会使金属杂质扩散并聚集在表面。最有利的地点,改善了其他地方的材料质量。基于这些观察结果,提出了通过控制金属杂质的空间分布和化学状态将其设计成较少重组活性状态的方法,从而减少了它们对太阳能电池性能的不利影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号