首页> 外文学位 >Advanced Power Theories and Signal Decomposition Methods for Controlling Smart Converters in Smart Grid Applications
【24h】

Advanced Power Theories and Signal Decomposition Methods for Controlling Smart Converters in Smart Grid Applications

机译:在智能电网应用中控制智能转换器的高级功率理论和信号分解方法

获取原文
获取原文并翻译 | 示例

摘要

During last two decades, the enormous level of aggregation of distributed generation units DGUs (widely known as the technology of Microgrids), in addition to increasing usage of nonlinear loads in power systems has raised new mathematical-conceptual challenges, specially in power electronics. Most of the traditional power theories and concepts therein, have been defined and formulated for simple balanced and linear systems. As a result, most of them are not directly applicable in case of new system structures with a considerable amount of uncertainty in the production and nonlinearity in the consumption. Due to uncertainties injected by the dynamic behavior of the DGUs (mostly renewable-based), the power components in the traditional power theories should be redefined under highly dynamic behavior of the power signals. Moreover, corresponding justifications need to be implemented to adapt all the related control strategies and compensation techniques. Renewable-based energies, such as wind and solar, are inherently uncertain power sources which can have unpredictable unwanted impacts on power flow, voltage regulation, and result in distribution losses. Microgrids that are quickly expanded through the power networks and power theories play a critical role in all the control strategies designed for these systems. When operating in the islanded mode, low-voltage Microgrids can exhibit considerable variation of amplitude and frequency of the voltage supplied to the loads, thus affecting power quality and network stability. Limited power capability in Microgrids can cause a voltage distortion which affects measurement accuracy, and possibly cause tripping of protections. Besides, the nonlinear and unbalanced loads obscure the traditional power definitions and equations. In such contexts, a reconsideration of power theories is required, since they form the basis for supply and load characterization and accountability. Moreover, developing new control techniques for harmonic and reactive compensators are mandatory, because they operate in a strongly interconnected environment and must perform cooperatively to face system dynamics, ensure power quality, and limit distribution losses.;The main purpose of this research is to improve the quality, reliability and stability of future electrical power delivery by improving the overall performance of smart Microgrids through usage of advanced time-domain power theories (such as instantaneous power theory (PQ) and Conservative Power Theory (CPT)). Another major contribution of this work is the introduction of new mathematical power theory concepts (termed Enhanced Instantaneous Power Theory (EIPT)) in addition to implementation of adequate new control strategies. This work specially expanded based on a specific viewpoint which says that power theories can be interpreted as advanced signal decomposition techniques which are used as the initial step in electrical power signals analysis. This signal analysis step forms the fundamental headstock for power electronic interfaces controller design procedure. After describing the mathematical fundamentals of our modified power theory, EIPT; then this method is used as a time-domain signal decomposition approach for relevant applications. Exploiting the fine levels of information revealed through analysis of the power signals with the mentioned decomposition approaches, we provide more levels of freedom in the case of control frameworks. This research also investigate the interesting application of EIPT, besides other practical power theories such as CPT, in islanding detection problems, where a new instantaneous intelligent passive islanding detection strategy will be introduced. In a nutshell, developing new time-domain power theory concepts while exploiting the inherent capacities of the pre-existing power theories, the main goal of this work will be designing a reliable and smart multifunctional control scheme that can address all the aforementioned challenges.
机译:在过去的二十年中,分布式发电单元DGU(广泛称为微电网技术)的巨大聚合,除了在电力系统中越来越多地使用非线性负载之外,还提出了新的数学概念挑战,尤其是在电力电子领域。已经为简单的平衡和线性系统定义和制定了其中的大多数传统功率理论和概念。结果,它们中的大多数不适用于具有大量生产不确定性和消耗非线性的新系统结构。由于DGU(主要是基于可再生能源)的动态行为带来的不确定性,传统功率理论中的功率分量应在功率信号的高度动态行为下重新定义。此外,需要实施相应的理由以适应所有相关的控制策略和补偿技术。风能和太阳能等可再生能源本身就是不确定的电源,会对电源流,电压调节产生不可预期的有害影响,并导致配电损失。通过电网和功率理论快速扩展的微电网在为这些系统设计的所有控制策略中都起着至关重要的作用。在孤岛模式下运行时,低压微电网可能会显示出向负载提供的电压的幅度和频率变化很大,从而影响电源质量和网络稳定性。微电网中有限的电源能力会导致电压失真,从而影响测量精度,并可能导致保护跳闸。此外,非线性和不平衡负载使传统的功率定义和方程式变得模糊。在这种情况下,需要对功率理论进行重新考虑,因为它们构成了供电和负载特性描述以及问责制的基础。此外,必须开发用于谐波和无功补偿器的新控制技术,因为它们在紧密互连的环境中运行,并且必须协同工作以面对系统动态,确保电能质量并限制配电损耗。;本研究的主要目的是改善通过使用先进的时域功率理论(例如瞬时功率理论(PQ)和保守功率理论(CPT))提高智能微电网的整体性能,从而提高未来电力输送的质量,可靠性和稳定性。这项工作的另一个主要贡献是,除了实施适当的新控制策略外,还引入了新的数学幂理论概念(称为增强瞬时功率理论(EIPT))。这项工作是基于特定观点而专门扩展的,该观点认为功率理论可以解释为高级信号分解技术,被用作电力信号分析的第一步。该信号分析步骤构成了功率电子接口控制器设计程序的基本主轴箱。在描述了我们改进的功率理论EIPT的数学基础之后;然后将该方法用作相关应用的时域信号分解方法。利用上述分解方法,利用通过分析功率信号而揭示的精细信息水平,在控制框架的情况下,我们提供了更高的自由度。除CPT等其他实用的功率理论外,本研究还研究了EIPT在孤岛检测问题中的有趣应用,其中将引入新的瞬时智能无源孤岛检测策略。简而言之,在开发新的时域功率理论概念的同时,利用现有功率理论的固有能力,这项工作的主要目标将是设计一种可靠,智能的多功能控制方案,以应对上述所有挑战。

著录项

  • 作者

    Harirchi, Farnaz.;

  • 作者单位

    Colorado School of Mines.;

  • 授予单位 Colorado School of Mines.;
  • 学科 Electrical engineering.;Engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号