首页> 外文学位 >Formation pathway of copper indium (di)selenide nanocrystals and solution deposition of copper indium (di)selenide films for photovoltaic applications.
【24h】

Formation pathway of copper indium (di)selenide nanocrystals and solution deposition of copper indium (di)selenide films for photovoltaic applications.

机译:铜铟(二)硒化物纳米晶体的形成途径和铜铟(二)硒化物薄膜的溶液沉积用于光伏应用。

获取原文
获取原文并翻译 | 示例

摘要

The development of suitable colloidal nanocrystal inks are a key step in the development of low-cost solar cells since they enable the use of fast and inexpensive coating processes such as spray coating and roll coating to form a thin film photo-absorbing layer. Copper indium selenide (CISe) nanocrystals were synthesized from CuCl, InCl3 and elemental selenium via a simple batch reaction in a coordinating solvent. The use of these nanocrystals for solar cells has been demonstrated by fabricating devices, with the first solar cells having an efficiency of 2.8%. Insights into the formation pathway of these nanocrystals are a key step to gain a better control over their electronic properties. Upon investigations, it was found that the formation of CISe nanocrystals in oleylamine solvent (cis-1-amino-9-octadecene) is preceded by the formation of copper selenide (CuSe) and indium selenide (InSe). The reaction takes place via the chlorination of the hydrocarbon (-CH, -CH2 & -CH 3) groups in oleylamine. In support of the proposed formation pathway, CISe nanocrystals have been synthesized in solvents without any amine or alkene groups, e.g. octadecane. Also, it was found that the reaction between the binary selenides, CuSe and InSe, primarily resulted in the formation of the disordered sphalerite phase of CISe. However, the liquid-solid phase reaction between InCl3 and CuSe in the presence of Se increased the yield of the ordered chalcopyrite phase. The knowledge of the formation pathway, where CuSe (or CuS films deposited on a substrate) reacts with InCl3 and Se in oleylamine to form CISe, has been used to develop a chemical liquid deposition (CLD) technique which enables the deposition of CISe thin films directly on to a substrate from a solution of precursors. This technique enables the fabrication of solar cells on low-cost, easy-to-install, flexible polymeric substrates by circumventing the high temperature (500 Celsius) vapor-phase processing steps. The use of these CLD-based films for applications in solar cells has been demonstrated by fabricating Glass/Mo/CuInSe2/CdS/i-ZnO/ITO/Ag devices of 2% efficiency.;Based on the advantages of the CLD technique, a solution-selenization technique was also developed which facilitates the reaction between any deposited film and selenium in the liquid phase at temperatures in the vicinity of 300 Celsius. CuInS2 films deposited on flexible molybdenum foil substrates were reacted with selenium in oleylamine to form CuIn(S,Se)2 thin films of the desired thickness. Our first solar cells processed from these films demonstrated an efficiency of 2.85%.
机译:合适的胶体纳米晶体油墨的开发是低成本太阳能电池开发中的关键步骤,因为它们能够使用快速且廉价的涂覆工艺(例如喷涂和辊涂)来形成薄膜光吸收层。在配位溶剂中,通过简单的间歇反应,由CuCl,InCl3和元素硒合成硒化铜铟(CISe)纳米晶体。这些纳米晶体在太阳能电池中的应用已通过制造设备得到证明,第一批太阳能电池的效率为2.8%。洞悉这些纳米晶体的形成途径是关键步骤,可以更好地控制其电子性能。经研究,发现在油胺溶剂(顺式-1-氨基-9-十八烯)中形成硒化硒(CISe)纳米晶体之前,先形成硒化铜(CuSe)和硒化铟(InSe)。该反应通过油胺中的烃基(-CH,-CH2和-CH 3)氯化而发生。为了支持所提出的形成途径,已经在没有任何胺或烯基的溶剂中合成了CISe纳米晶体,例如,N-亚乙基。十八烷。而且,发现二元硒化物CuSe和InSe之间的反应主要导致CISe的无序闪锌矿相的形成。但是,在存在硒的情况下,InCl3和CuSe之间的液相-固相​​反应提高了有序黄铜矿相的收率。 CuSe(或沉积在基板上的CuS膜)与油胺中的InCl3和Se反应形成CISe的形成途径的知识已被用于开发化学液体沉积(CLD)技术,该技术能够沉积CISe薄膜直接从前体溶液直接转移到基质上。通过避开高温(500摄氏度)气相工艺步骤,该技术能够在低成本,易于安装的柔性聚合物基板上制造太阳能电池。通过制造效率为2%的Glass / Mo / CuInSe2 / CdS / i-ZnO / ITO / Ag器件,已经证明了将这些基于CLD的薄膜用于太阳能电池的应用;基于CLD技术的优势,还开发了溶液硒化技术,该技术有助于在300摄氏度左右的温度下液相中任何沉积膜与硒之间的反应。使沉积在柔性钼箔基板上的CuInS2膜与硒在油胺中的反应,以形成所需厚度的CuIn(S,Se)2薄膜。我们用这些薄膜加工的第一批太阳能电池的效率为2.85%。

著录项

  • 作者

    Kar, Mahaprasad.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Alternative Energy.;Engineering Materials Science.;Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 173 p.
  • 总页数 173
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号