首页> 外文学位 >Modeling and inversion of dispersion curves of surface waves in shallow site investigations.
【24h】

Modeling and inversion of dispersion curves of surface waves in shallow site investigations.

机译:浅场地调查中表面波频散曲线的建模和反演。

获取原文
获取原文并翻译 | 示例

摘要

The shallow S-wave velocity structure is very important for the seismic design of engineered structures and facilities, seismic hazard evaluation of a region, comprehensive earthquake preparedness, development of the national seismic hazard map, and seismic-resistant design of buildings. The use of surface waves for the characterization of the shallow subsurface involves three steps: (a) acquisition of high-frequency broadband seismic surface wave records generated either by active sources or passive ambient noise (microtremors or microseisms), (b) extraction of phase dispersion curves from the recorded seismic signals, and (c) derivation of S-wave velocity profiles either using inversion algorithms or manually error and trial forward modeling. The first two steps have been successfully achieved by several techniques. However, the third step (inversion) needs more improvements. An accurate and automatic inversion method is needed to generate shallow S-wave velocity profiles.; With the achievement of a fast forward modeling method, this study focuses on the inversion of phase velocity dispersion curves of surface waves contained in ambient seismic noise for a one dimensional, flat-layered S-wave velocity structure.; For the forward modeling, we present a new more efficient algorithm, called the fast generalized R/T (reflection and transmission) coefficient method, to calculate the phase velocity of surface waves for a layered earth model. The fast method is based on but is more efficient than the traditional ones. The improvements by this study include (1) computation of the generalized reflection and transmission coefficients without calculation of the modified reflection and transmission coefficients; (2) presenting an analytic solution for the inverse of the 4X4 layer matrix E. Compared with traditional R/T methods, the fast generalized R/T coefficient method, when applied on Rayleigh waves, significantly improves the speed of computation, cutting the computational time at least by half while keeping the stability of the traditional R/T method.; On inversion study, the dissertation explored a linear inversion technique, a non-linear inversion method, and a joint method on the dispersion data of surface waves. Chapter 3 explores the Occam's linear inversion technique with a higher-order Tikhonov regulization. The blind tests on a suite of nine synthetic models and two field data sets show that the final model is heavily influenced by (a) the initial model (in terms of the number of layers and the initial S-wave velocity of each layer); (b) the minimum and the maximum depth of profiles; (c) the number of dispersion picks; (d) the frequency density of dispersion picks; and (e) other noise.; To minimize this initial-model-dependence of the Occam's inversion, the nonlinear simulated annealing (SA) inversion technique is proposed in Chapter 4. Following previous developments I modified the SA inversion yielding one-dimensional shallow S-wave velocity profiles from high frequency fundamental-mode Rayleigh dispersion curves and validated the inversion with blind tests. Unlike previous applications of SA, this study draws random numbers from a standard Gaussian distribution. The numbers simultaneously perturb both S-wave velocities and layer thickness of models. The annealing temperature is gradually decreased following a polynomial-time cooling schedule. Phase velocities are calculated using the reflectivity-transmission method. The reliability of the model resulting from our implementation is evaluated by statistically calculating the expected values of model parameters and their covariance matrices. Blind tests on the same data sets as these in Chapter 3 show that the SA implementation works well for S-wave velocity inversion of dispersion curves from high-frequency fundamental-mode Rayleigh waves. Blind estimates of layer S-wave velocities fall within one standard deviation of the velocities of the original synthetic models in 78
机译:浅层S波速度结构对于工程结构和设施的抗震设计,区域地震危险性评估,全面地震准备,制定国家地震危险性地图以及建筑物的抗震设计非常重要。使用表面波表征浅层地下过程涉及三个步骤:(a)采集由有源源或无源环境噪声(微震或微震)产生的高频宽带地震表面波记录,(b)提取相记录的地震信号的频散曲线,以及(c)使用反演算法或手动误差和试探正演模型推导S波速度剖面。前两种步骤已通过多种技术成功实现。但是,第三步(反转)需要更多改进。需要一种准确而自动的反演方法来产生浅S波速度剖面。随着快速前向建模方法的实现,本研究着重于一维平坦层状S波速度结构中环境地震噪声中包含的表面波相速度色散曲线的反演。对于正向建模,我们提出了一种新的更有效的算法,称为快速广义R / T(反射和透射)系数方法,用于计算分层地球模型的表面波的相速度。快速方法基于但比传统方法更有效。这项研究的改进之处包括:(1)计算广义反射和透射系数,而不计算修正的反射和透射系数; (2)给出了4X4层矩阵E逆的解析解。与传统的R / T方法相比,快速广义R / T系数方法在瑞利波上应用时,显着提高了计算速度,减少了计算量。在保持传统R / T方法稳定性的同时,至少要花费一半的时间。在反演研究中,本文探索了一种线性反演技术,一种非线性反演方法和一种联合方法来处理表面波的色散数据。第3章探讨了Occam的线性反演技术,具有更高阶的Tikhonov调节性。对一组九个合成模型和两个现场数据集进行的盲测表明,最终模型在很大程度上受到以下因素的影响:(a)初始模型(就层数和每层的初始S波速度而言); (b)轮廓的最小和最大深度; (c)分散签的数量; (d)分散镐的频率密度; (e)其他噪音。为了最小化Occam反演的这种初始模型依赖性,第4章提出了非线性模拟退火(SA)反演技术。根据先前的发展,我修改了SA反演,从高频基波产生了一维浅S波速度剖面模瑞利频散曲线,并通过盲测验证了反演。与SA以前的应用不同,本研究从标准的高斯分布中提取随机数。这些数字同时扰动了模型的S波速度和层厚。退火温度根据多项式冷却时间表逐渐降低。使用反射率-透射法计算相速度。通过统计计算模型参数及其协方差矩阵的期望值,可以评估由我们实施产生的模型的可靠性。在与第3章相同的数据集上进行的盲测试表明,SA实现对于高频基模瑞利波的色散曲线的S波速度反演效果很好。 S波速度的盲估计在78个原始合成模型速度的一个标准偏差内

著录项

  • 作者

    Pei, Donghong.;

  • 作者单位

    University of Nevada, Reno.$bGeology.;

  • 授予单位 University of Nevada, Reno.$bGeology.;
  • 学科 Geophysics.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 182 p.
  • 总页数 182
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地球物理学;
  • 关键词

  • 入库时间 2022-08-17 11:39:16

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号