首页> 外文会议>SPWLA Annual Logging Symposium >MICROSEISMIC FRACTURE MONITORING
【24h】

MICROSEISMIC FRACTURE MONITORING

机译:微震断裂监测

获取原文

摘要

Passive borehole microseismic activity emanates from a reservoir due to changes in stress and pressure and is monitored with a string of triaxial geophones in a monitoring well. Applications of passive microseismic monitoring include mapping the extent of fractures during hydraulic fracture treatments, fault mapping, and tracking a gas or water front during assisted recovery production. Microseismic seismic monitoring has been employed for some 40 years with resurgence during the last 10 years as evidenced by the number of service companies now providing this service. Published articles in the mid 1980’s discussed hydraulic fracture monitoring with a triaxial geophone located in the same borehole where the hydraulic fracture treatment was applied. Current technology generally uses two wells: a treatment well and a monitor well where the string of triaxial geophones is emplaced for monitoring the hydraulic fracture. To evaluate any hydraulic fracturing modeling and processes, the extension of the hydraulic fractures that have been generated must be known in terms of direction, length, height, and growth history. Such information can be provided by microseismic fracture monitoring. The moveout and the differences in time between P- and S- wave arrivals are used to calculate the distances from a monitoring well to the origin of a microseismic event. The event direction is calculated from a hodogram. Important elements of a monitoring system include the receivers, telemetry systems, and automatic processing of vast amounts of data. This paper summarizes the physics, mathematics, and uncertainties of the microseismic fracture monitoring process. Interpretation procedures and issues are discussed, and examples of the important results are illustrated. In particular, key elements of microseismic monitoring include development and confirmation of a velocity model and microseismic event detection from a continuous stream of data from 8 to 12 triaxial geophones. Each individual event is downloaded to an event file and processed automatically by an event locator to fix an event in time and space. In the process, the uncertainty in location of an event is also determined. Finally, by plotting all events temporally relative to the treatment and to the monitoring wells in 2D and 3D, the growth over time of a hydraulic fracture can be determined in terms of direction, length, height, and growth history. All of these key elements are illustrated in this paper.
机译:被动井眼微地震活动是由于应力和压力的变化而从储层发出的,并在监测井中用一串三轴检波器进行监测。被动微震监测的应用包括在水力压裂处理过程中绘制裂缝范围图,断层图以及在辅助采收过程中跟踪天然气或水锋。微震地震监测已经使用了约40年,在过去的10年中逐渐兴起,这一点已从现在提供这项服务的服务公司的数量中得到证明。 1980年代中期发表的文章讨论了使用三轴地震检波器对水力压裂进行监测,该三轴检波器位于进行水力压裂处理的同一钻孔中。当前的技术通常使用两个井:一个处理井和一个监测井,在监测井中放置了三轴检波器串以监测水力压裂。为了评估任何水力压裂模型和过程,必须在方向,长度,高度和生长历史方面知道已产生的水力压裂的扩展。这种信息可以通过微震裂缝监测来提供。纵波和纵波与横波到达之间的时差和时间差用于计算从监测井到微震事件发生的距离。事件方向是根据直方图计算得出的。监视系统的重要元素包括接收器,遥测系统和自动处理大量数据。本文总结了微地震裂缝监测过程的物理,数学和不确定性。讨论了解释程序和问题,并举例说明了重要结果。特别是,微地震监测的关键要素包括开发和确认速度模型以及从8到12个三轴地震检波器的连续数据流中检测微地震事件。每个单独的事件都下载到事件文件中,并由事件定位器自动处理,以在时间和空间上固定事件。在此过程中,还将确定事件位置的不确定性。最后,通过在2D和3D中绘制相对于处理过程和与监测井有关的所有时间临时事件,可以根据方向,长度,高度和生长历史确定水力压裂随着时间的增长。本文阐述了所有这些关键要素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号