首页> 外文会议>SPE/ISRM rock mechanics conference (Oil Rock 2002) >Some Advances in Near Wellbore Geomechanics
【24h】

Some Advances in Near Wellbore Geomechanics

机译:近井眼地质力学的一些进展

获取原文
获取原文并翻译 | 示例

摘要

There has been substantial recent progress in couplingrngeomechanical effects to reservoir response, thus dramaticallyrnimproving representation of the consequences of rockrnresponse to pressure changes. New reserves have beenrnidentified from compaction. Injection geomechanics hasrngained an increase in interest due to its impact on thernreservoir, faults and well hardware. Changes inrntransmissibility are now seriously implemented in reservoirrnengineering tools with more attention directed at the presencernof compaction and dilatant bands around producers orrninjectors. Efforts are progressing to ensure adequate couplingrnbetween the local effects of the rock deformation near thernwellbore, as well as along faults or bedding planes, and thernevolving stresses and deformation in the reservoir.rnThis paper attempts to discuss current gaps inrnunderstanding the intricacies and details of coupling farfieldrndeformation to well completion. Examples are shown wherernreservoir compaction or dilatancy is explicitly coupled to nearwellborernbehavior, with specific application for assessing wellrnperformance and survivability. The analyses can use reservoirrnsimulations coupled with analytical predictions of stresses andrndeformations in individual simulator blocks. The predictedrnstresses and deformations form the boundary conditions forrnfinite element modeling that can focus in on the details aroundrnthe completion itself. This is in contrast to the currentrnapproaches that use explicit coupling of pressure andrndeformation in complete massive finite elementrnrepresentations, with refined gridding around the completion.rnThe intimate details of coupling reservoir deformation tornthe completion require more intensive consideration. Forrnexample, “How can the cement sheath be represented?” orrn“What are some of the constitutive considerations in the nearwellborernregion that impact integrity?” and “How is varyingrntransmissibility related to well integrity?” These issues arernconsidered. There are three goals:rn1. Start to recognize completion and productionrnmanagement practices that will improve completionrnlongevity and optimize well productivity.rn2. Identify reasonable methodologies for representing therncoupling between the completion and the reservoir,rnincluding yielded zones (dilatant and/or compactant),rncompaction bands with varying transmissibility, therncement sheath with or without a microannulus and thernmud cake.rn3. Delineate approximate methods that will adequatelyrnforecast completion distress and permeability impairmentrnwithout the necessity of expensive and time-consumingrndetailed finite element simulations.
机译:在将地质力学效应耦合到储层响应方面,最近有了实质性进展,从而显着改善了岩石对压力变化的响应结果的表示。从压实中发现了新的储量。注入地质力学对储层,断层和井眼硬件的影响引起了人们的兴趣。现在,在储层工程工具中已认真实现了对可传输性的改变,更多地关注了生产者或注入者周围的压实度和扩张带。努力确保在井筒附近以及沿断层或顺层平面的岩石变形的局部效应与储层中的旋转应力和变形之间实现充分的耦合。本文试图探讨当前的间隙,以了解耦合远场变形的复杂性和细节。到完井。给出了一些实例,其中储层压实度或剪胀性明确地与近井眼行为耦合,并特别用于评估井眼的性能和生存能力。该分析可以使用储层模拟,以及各个模拟器模块中应力和变形的分析预测。预测的应力和变形形成了有限元建模的边界条件,可以专注于完井本身周围的细节。这与目前在完整的大规模有限元表示中使用压力与变形的显式耦合的方法形成了鲜明的对比,在完井附近还存在细化的网格。耦合储层变形与完井的紧密关系需要更深入的考虑。例如,“如何表示水泥护套?” orrn“在井附近区域,哪些构成因素会影响完整性?”以及“传输率的变化与井的完整性有何关系?”这些问题被考虑。有三个目标:开始认识到完井和生产管理实践,这些实践将提高完井寿命,并优化油井生产率。确定合理的方法来表示完井和储层之间的热耦合,包括屈服区(扩张区和/或压实区),具有不同透射率的压实带,带或不带微环圈的强化套管和泥浆饼。勾勒出近似的方法,这些方法可以充分预测完井压力和渗透率损失,而无需进行昂贵且费时的详细有限元模拟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号