首页> 外文会议>Remote sensing and modeling of ecosystems for sustainability VI >Remote sensing techniques to monitor nitrogen-driven carbon dynamics in field corn
【24h】

Remote sensing techniques to monitor nitrogen-driven carbon dynamics in field corn

机译:遥感技术监测田间玉米中氮驱动的碳动态

获取原文
获取原文并翻译 | 示例

摘要

Patterns of change in vegetation growth and condition are one of the primary indicators of the present and future ecological status of the globe. Nitrogen (N) is involved in photochemical processes and is one of the primary resources regulating plant growth. As a result, biological carbon (C) sequestration is driven by N availability. Large scale monitoring of photosynthetic processes are currently possible only with remote sensing systems that rely heavily on passive reflectance (R) information. Unlike R, fluorescence (F) emitted from chlorophyll is directly related to photochemical reactions and has been extensively used for the elucidation of the photosynthetic pathways. Recent advances in passive fluorescence instrumentation have made the remote acquisition of solar-induced fluorescence possible. The goal of this effort is to evaluate existing reflectance and emerging fluorescence methodologies for determining vegetation parameters related to photosynthetic function and carbon sequestration dynamics in plants. Field corn N treatment levels of 280, 140, 70, and 0 kg N / ha were sampled from an intensive test site for a multi-disciplinary project, Optimizing Production Inputs for Economic and Environmental Enhancement (OPE). Aircraft, near-ground, and leaf-level measurements were used to compare and contrast treatment effects within this experiment site assessed with both reflectance and fluorescence approaches. A number of spectral indices including the R derivative index D_(730)/D_(705), the normalized difference of R_(750) vs. R_(705), and simple ratio R_(800)/R_(750) differentiated three of the four N fertilization rates and yielded high correlations to three important carbon parameters: C:N, light use efficiency, and grain yield. These results advocate the application of hyperspectral sensors for remotely monitoring carbon cycle dynamics in terrestrial ecosystems.
机译:植被生长和状况的变化模式是全球目前和未来生态状况的主要指标之一。氮(N)参与光化学过程,是调节植物生长的主要资源之一。结果,生物碳(C)的固存是由氮的可利用性驱动的。目前,只有在严重依赖无源反射(R)信息的遥感系统中,才可能对光合作用过程进行大规模监视。与R不同,叶绿素发出的荧光(F)与光化学反应直接相关,已被广泛用于阐明光合作用途径。无源荧光仪器的最新进展使得远程获取太阳诱导荧光成为可能。这项工作的目的是评估现有的反射率和新兴的荧光方法,以确定与植物光合作用和碳固存动态相关的植被参数。从多学科项目“优化生产投入以促进经济和环境改善(OPE)”的密集试验场中采样的田间玉米N处理水平为280、140、70和0 kg N / ha。使用飞机,近地和叶面测量来比较和对比该实验场所内的处理效果,并通过反射和荧光方法进行评估。包括R导数索引D_(730)/ D_(705),R_(750)与R_(705)的归一化差以及简单比率R_(800)/ R_(750)的许多光谱指数将三个四个氮肥的施肥速率与三个重要碳参数(C:N,光利用效率和谷物产量)高度相关。这些结果提倡将高光谱传感器用于远程监测陆地生态系统中的碳循环动态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号