首页> 外文会议>Proceedings of the 14th ACM/IEEE international symposium on Low power electronics and design >Optimizing total power of many-core processors considering voltage scaling limit and process variations
【24h】

Optimizing total power of many-core processors considering voltage scaling limit and process variations

机译:考虑电压缩放限制和工艺变化,优化多核处理器的总功率

获取原文
获取原文并翻译 | 示例

摘要

Recently, processor manufacturers have integrated more than a hundred cores in a single die to deliver extremely high throughput for highly-parallel, data-intensive applications like physics simulations, 3D-graphics, etc. Meanwhile, excessive power consumption rather than silicon area will limit the performance of many-core processors running the aforementioned applications. In this paper, to optimize the total power of many-core processors, we analyze the impact of 1) the number of cores, 2) parallelism in applications, and 3) supply voltage scaling limit due to on-die memory failure at low supply voltage. Our analysis shows that doubling the number of cores with lower than nominal supply voltage offers the most cost-effective power reduction, resulting in up to 65% less power consumption for highly-parallel applications even when supply voltage scaling is limited to 0.7V. The reduced power, in turn, can be used to improve throughput at higher voltage in power-constrained many-core processors.Furthermore, we extend our analysis to consider within-die core-to-core frequency and leakage variations. When only a subset of cores in a many-core processor are to be chosen to achieve a demanded throughput, moderately fast and leaky cores always provide optimal power consumption. In addition, frequency-island clocking, which allows independent frequency for each core, leads to 7% less power consumption than global clocking, and it prefers the fastest core (among the chosen ones) to process the totally sequential portion of workload.
机译:最近,处理器制造商已在单个裸片中集成了一百多个内核,以为物理模拟,3D图形等高度并行,数据密集型应用提供极高的吞吐量。同时,功耗过大而不是硅片面积将受到限制运行上述应用程序的多核处理器的性能。在本文中,为了优化多核处理器的总功率,我们分析了以下因素的影响:1)核数,2)应用程序中的并行性以及3)低电源下的片上存储器故障导致的电源电压缩放限制电压。我们的分析表明,在低于标称电源电压的情况下,将内核数量加倍可提供最具成本效益的功耗降低,即使在电源电压缩放比例限制为0.7V的情况下,对于高度并行的应用,其功耗也可降低多达65%。反过来,降低的功率可以用来提高功率受限的多核处理器在更高电压下的吞吐量。此外,我们扩展了分析范围,以考虑芯片内内核间频率和泄漏变化。当仅选择多核处理器中的一部分核以实现所需的吞吐量时,中等速度且泄漏的核总是可以提供最佳功耗。此外,频率孤岛时钟允许每个内核具有独立的频率,与全局时钟相比,其功耗降低了7%,并且它更喜欢最快的内核(在所选内核中)来处理工作负载的整个顺序部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号