首页> 外文会议>Proceedings of the 14th ACM/IEEE international symposium on Low power electronics and design >Frequency and yield optimization using power gates in power-constrained designs
【24h】

Frequency and yield optimization using power gates in power-constrained designs

机译:在功率受限的设计中使用功率门进行频率和成品率优化

获取原文
获取原文并翻译 | 示例

摘要

Manufactured dies exhibit a large spread of maximum frequency and leakage power due to process variations, which have been increasing with technology scaling. Reducing the spread is very important for maximizing the frequency and the yield of power-constrained designs, because otherwise many dies that do not satisfy frequency or power constraints would be discarded. In this paper, we propose two optimization methods to improve the maximum operating frequency and the yield using power gates that already exist in many power-constrained designs. In the first method, we consider the designs of multiple cores, where each of them can be independently power-gated. When each core shows different frequencies due to within-die variations, the strength of a power gate in each core is adjusted to make their maximum operating frequencies even. This allows faster cores to consume less active leakage power, reducing the total power consumption well below a power constraint in a globally-clocked design. We subsequently increase global supply voltage for higher overall frequency until the power constraint is satisfied. In our experiments assuming multicore processors with 2--16 cores, the maximum operating frequency was improved by 4-23%. In the second method, we take leaky-but-fast dies (which otherwise would be discarded) and adjust the strength of the power gates such that they can operate in an acceptable power and frequency region. The problem is extended to designs employing a frequency binning strategy, where we have an additional objective of maximizing the number of dies for higher frequency bins. In our experiments with ISCAS benchmark circuits, most discarded fast-but leaky dies were recovered using the second method.
机译:由于工艺变化,制造的模具具有最大频率和最大泄漏功率的大范围扩展,并且随着技术规模的扩大而增加。减小扩展对于最大化频率和功率受限设计的成品率非常重要,因为否则会丢弃许多不满足频率或功率约束的芯片。在本文中,我们提出了两种优化方法,以利用许多功率受限设计中已经存在的功率门来提高最大工作频率和良率。在第一种方法中,我们考虑了多个内核的设计,其中每个内核都可以独立供电。当每个内核由于管芯内的变化而显示不同的频率时,每个内核中的功率门的强度都会调整为使其最大工作频率均匀。这使速度更快的内核消耗的有源泄漏功率更少,从而将总功耗降低到远低于全局时钟设计中的功率约束。随后,我们将全局电源电压提高到更高的总频率,直到满足功率约束为止。在我们的实验中,假设具有2--16核的多核处理器,最大工作频率提高了4-23%。在第二种方法中,我们采用漏但快速的管芯(否则将被丢弃)并调整功率门的强度,以使它们可以在可接受的功率和频率范围内工作。该问题扩展到采用频率合并策略的设计,在该设计中,我们还有一个额外的目标,就是最大化用于较高频率合并的管芯数量。在我们使用ISCAS基准电路进行的实验中,使用第二种方法可以回收大多数被丢弃的快速但漏水的管芯。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号