首页> 外文会议>Precision Agriculture and Biological Quality >Electro-optical-based machine vision for weed identification
【24h】

Electro-optical-based machine vision for weed identification

机译:基于光电的机器视觉识别杂草

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Abstract: This work evaluates real-time techniques for a novel concept of identifying weeds, location and extraction of outline features. THE proposed techniques are conducted by electro- optical methods and perform with the speed of light. The optical system is compact, easy to align and uses a small number of inexpensive components. Generating the 'right' filter for a pattern recognition problem is presented as an optimization process for which the filter performance is the function to be maximized. The genetic algorithm is introduce as a search procedure that uses a biologically motivated random choice as a tool to guide a highly exploitative search through the filter space for nonlinear correlation. The features of the genetic algorithm are ideal for a highly efficient and fast learning process. Computer simulations demonstrate very efficient pattern recognition and excellent discrimination. !10
机译:摘要:这项工作评估了实时技术,用于识别杂草,定位和提取轮廓特征的新颖概念。所提出的技术通过电光方法进行,并以光速执行。光学系统紧凑,易于对准,并使用少量廉价组件。生成针对模式识别问题的“正确”滤波器是一种优化过程,该过程的滤波器性能是要最大化的功能。遗传算法是作为一种搜索过程而引入的,该过程使用具有生物学动机的随机选择作为一种工具来指导通过滤波器空间进行高利用性搜索以进行非线性相关。遗传算法的功能非常适合高效且快速的学习过程。计算机仿真显示出非常有效的模式识别和出色的辨别力。 !10

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号