首页> 外文会议>Physiology, Function, and Structure from Medical Images pt.1; Progress in Biomedical Optics and Imaging; vol.7,no.29 >Functional microimaging: an integrated approach for advanced bone biomechanics and failure analysis
【24h】

Functional microimaging: an integrated approach for advanced bone biomechanics and failure analysis

机译:功能微成像:先进的骨生物力学和失败分析的综合方法

获取原文
获取原文并翻译 | 示例

摘要

Biomechanical testing is the gold standard to determine bone competence, and has been used extensively. Direct mechanical testing provides detailed information on overall bone mechanical and material properties, but fails in revealing local properties such as local deformations and strains or quantification of fracture progression. Therefore, we incorporated several imaging methods in our mechanical setups in order to get a better insight into bone deformation and failure characteristics. Our aim was to develop an integrative approach for hierarchical investigation of bone, working at different scales of resolution ranging from the whole bone to its ultrastructure. At a macroscopic level, we used high-resolution and high-speed cameras which drastically increased the amount of information obtained from a biomechanical bone test. The new image data proved especially important when dealing with very small bones such as the murine femur. Here the feedback of the camera in the process of aligning and positioning the samples is indispensable for reproducibility. In addition, global failure behavior and fracture initiation can now be visualized with high temporal resolution. At a microscopic level, bone microstructure, i.e. trabecular architecture and cortical porosity, are known to influence bone strength and failure mechanisms significantly. For this reason, we developed an image-guided failure assessment technique, also referred to as functional microimaging, allowing direct time-lapsed 3D visualization and computation of local displacements and strains for better quantification of fracture initiation and progression at the microscopic level. While the resolution of typical desktop micro-computed tomography is around a few micrometers, highly brilliant X-rays from synchrotron radiation permit to explore the nanometer world. This allowed, for the first time, to uncover fully nondestructively the 3D ultrastructure of bone including vascular and cellular structures and to investigate their role in development of bone microcracks in an unprecedented resolution. We conclude that functional microimaging, i.e. the combination of biomechanical testing with non-destructive 3D imaging and visualization are extremely valuable in studying bone failure mechanisms. Functional investigation of microcrack initiation and propagation will lead to a better understanding of the relative contribution of bone mass and bone quality to bone competence.
机译:生物力学测试是确定骨骼能力的金标准,已被广泛使用。直接机械测试可提供有关整体骨骼机械和材料特性的详细信息,但无法揭示局部特性,例如局部变形和应变或骨折进展的量化。因此,我们在机械装置中采用了几种成像方法,以便更好地了解骨骼的变形和破坏特征。我们的目标是开发一种用于骨骼分层研究的集成方法,以从整个骨骼到其超微结构的不同分辨率范围工作。在宏观层面上,我们使用了高分辨率和高速相机,这些相机极大地增加了从生物力学骨测试中获得的信息量。当处理非常细小的骨头(例如鼠股骨)时,新的图像数据特别重要。在此,在对准和定位样品过程中,摄像机的反馈对于可重复性是必不可少的。此外,现在可以以高时间分辨率可视化整体失效行为和骨折萌生。在微观水平上,已知骨微结构,即小梁结构和皮质孔隙率,显着影响骨强度和破坏机制。由于这个原因,我们开发了一种图像引导的失效评估技术,也称为功能性微成像,可以直接进行延时的3D可视化以及局部位移和应变的计算,以便在微观层面更好地量化骨折的发生和发展。虽然典型的台式微型计算机断层扫描的分辨率约为几微米,但同步加速器辐射产生的高亮度X射线却可以探索纳米世界。这第一次使骨骼的3D超微结构(包括血管和细胞结构)完全无损地被发现,并以前所未有的分辨率研究了它们在骨骼微裂纹发展中的作用。我们得出的结论是,功能性显微成像(即生物力学测试与无损3D成像和可视化的结合)在研究骨衰竭机制中非常有价值。对微裂纹萌生和传播的功能研究将使人们更好地了解骨质量和骨质量对骨能力的相对贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号