【24h】

Hydrogen Recycling in the RFX Reversed Field Pinch

机译:在RFX反向磁场夹中进行氢气回收

获取原文
获取原文并翻译 | 示例

摘要

In most of the circumstances the density behaviour in RFX strongly depends on recycling at the wall, entirely made of graphite tiles. Boronisation increases by approximately ten times the wall reservoir with respect to the unconditioned tiles and allows a better density control in the entire range of plasma current so far experimented. Wall modes locking concentrates the dissipation of the relatively high power (20-80 MW) on to a narrow region of the wall and strongly affects recycling. Localised wall surface heating in high power discharges entails blooming processes with strong density build-up, wall saturation and also fast annihilation of boronisation through strong carbon redeposition. Dragging around toroidally the locked modes by introducing rotating perturbation modifies the topology of the plasma wall interaction, smears the power dissipation onto a larger surface, prevents the occurrence of blooming and improves the density control capability. Considering that the energy confinement time in RFX scales positively with density, one may deduce that since high densities are associated to high recycling at the wall, the latter is not detrimental per se as to the plasma performance. Impurity concentration in general is not a severe issue especially in high density regimes, apparently due to the strong impurity screening at the edge. It is however believed that a reduction of the wall recycling combined with other means of plasma refuelling such as pellet injection would beneficially affect the overall confinement. Pellet injection experiments have produced plasmas with the best dilution ever reached in RFX, with values close to one. In addition, the reduction of wall recycling and therefore of the neutral particle density at the edge should mitigate the effects of the related viscosity . In particular it should beneficially influence both topology and magnitude of the (EXB)/B~2 flow shear at the edge, which appears to be important for improving transport through turbulence stabilisation. In this perspective, an experiment to actively control the wall recycling has been envisaged: a vented pump limiter will be soon experimented on RFX to verify its pumping efficiency in the Reversed Field Pinch configuration.
机译:在大多数情况下,RFX中的密度行为在很大程度上取决于完全由石墨砖制成的墙壁的回收利用。相对于未处理的瓷砖,硼化作用增加了壁储层的大约十倍,并且到目前为止,在整个等离子流范围内,它都能更好地控制密度。壁模式锁定将相对较高的功率(20-80 MW)的耗散集中在壁的狭窄区域上,并强烈影响回收利用。高功率放电中的局部壁表面加热需要具有高密度堆积,壁饱和以及通过强碳再沉积快速消除硼化的起霜过程。通过引入旋转扰动以环形方式在锁定模式周围拖移会修改等离子体壁相互作用的拓扑结构,将功率散布涂抹到较大的表面上,防止出现光晕并提高密度控制能力。考虑到RFX中的能量限制时间与密度成正比,可以推断出,由于高密度与壁的高回收率相关,因此后者本身对等离子体性能无害。通常,杂质浓度并不是一个严重的问题,尤其是在高密度条件下,这显然是由于边缘处的强杂质筛选所致。然而,据信减少壁回收再结合其他的等离子体加油手段,例如颗粒注入,将有益地影响整体限制。颗粒注射实验产生的血浆稀释度是RFX所达到的最好水平,接近一倍。另外,壁再循环的减少以及边缘处的中性颗粒密度的减少应减轻相关粘度的影响。特别地,它应该有利地影响边缘处的(EXB)/ B〜2流动剪切的拓扑结构和大小,这对于通过湍流稳定化改善传输似乎很重要。从这个角度来看,已经设想了一个可以主动控制壁回收的实验:很快将在RFX上对排气泵限流器进行实验,以验证其在反向场捏配置中的泵送效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号