首页> 外文会议>Modeling, Signal Processing, and Control >Optimum Place of Piezoelectric Material in the Piezoactuator Design
【24h】

Optimum Place of Piezoelectric Material in the Piezoactuator Design

机译:压电执行器设计中压电材料的最佳位置

获取原文
获取原文并翻译 | 示例

摘要

Piezoelectric actuators offer significant promise in a wide range of applications. The piezoelectric actuators considered in this work essentially consist of a flexible structure actuated by piezoceramics that must generate output displacement and force at a certain specified point of the domain and direction. The flexible structure acts as a mechanical transformer by amplifying and changing the direction of piezoceramics output displacements. The design of these piezoelectric actuators are complex and a systematic design method, such as topology optimization has been successfully applied in the latest years, with appropriate formulation of the optimization problem to obtain optimized designs. However, in these previous design formulations, piezoceramics position are usually kept fixed in the design domain and only the flexible structure is designed by distributing only some non-piezoelectric material (Aluminum, for example). This imposes a constraint in the position of piezoelectric material in the optimization problem limiting the optimality of the solution. Thus, in this work, a formulation that allows the simultaneous search for an optimal topology of a flexible structure as well as the optimal positions of the piezoceramics in the design domain, to achieve certain specified actuation movements, will be presented. This can be achieved by allowing the simultaneous distribution of non-piezoelectric and piezoelectric material in the design domain. The optimization problem is posed as the design of a flexible structure together with optimum positions of piezoelectric material that maximizes output displacements or output forces in a certain specified direction and point of the domain. The method is implemented based on the SIMP material model where fictitious densities are interpolated in each finite element, providing a continuum material distribution in the domain. Presented examples are limited to two-dimensional models, once most of the applications for such piezoelectric actuators are planar devices.
机译:压电执行器在广泛的应用领域中具有广阔的前景。在这项工作中考虑的压电致动器基本上由压电陶瓷致动的柔性结构组成,必须在域和方向的特定指定点上产生输出位移和力。柔性结构通过放大和改变压电陶瓷输出位移的方向来充当机械变压器。这些压电致动器的设计是复杂的,并且最近几年已经成功地应用了诸如拓扑优化之类的系统设计方法,通过适当地表达优化问题来获得优化设计。但是,在这些先前的设计公式中,压电陶瓷的位置通常在设计域中保持固定,并且仅通过分配一些非压电材料(例如铝)来设计柔性结构。这在优化问题中对压电材料的位置施加了约束,从而限制了解决方案的最优性。因此,在这项工作中,将提出一种配方,该配方允许同时搜索柔性结构的最佳拓扑以及设计领域中压电陶瓷的最佳位置,以实现某些特定的致动运动。这可以通过允许在设计领域同时分配非压电和压电材料来实现。最优化问题在于柔性结构的设计以及压电材料的最佳位置,该最佳位置使在特定区域的特定方向和点上的输出位移或输出力最大化。该方法是基于SIMP材料模型实现的,其中在每个有限元中插入了虚拟密度,从而在域中提供了连续的材料分布。提出的例子仅限于二维模型,一旦这种压电致动器的大多数应用是平面装置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号