首页> 外文会议>Modeling, Signal Processing, and Control >Multi-actuated Functionally Graded Piezoelectric Micro-Tools Design Using Topology Optimization
【24h】

Multi-actuated Functionally Graded Piezoelectric Micro-Tools Design Using Topology Optimization

机译:基于拓扑优化的多驱动功能梯度压电微工具设计

获取原文
获取原文并翻译 | 示例

摘要

The micro-tools considered in this work consist essentially of multi-flexible structures actuated by two or more piezoceramic devices that must generate different output displacements and forces at different specified points of the domain and on different directions. The multiflexible structure acts as a mechanical transformer by amplifying and changing the direction of the piezoceramics output displacements. Micro-tools offer significant promise in a wide range of applications such as cell manipulation, microsurgery, and microanotechnology processes. Although the design of these micro-tools is complicated due to the coupling among movements generated by various piezoceramics, it can be realized by means of topology optimization concepts. Recently, the concept of functionally graded materials (FGMs) has been explored in piezoelectric materials to improve performance and increase lifetime of piezoelectric actuators. Usually for an FGM piezoceramic, elastic, piezoelectric, and dielectric properties are graded along the thickness. Thus, the objective of this work is to study the influence of piezoceramic property gradation in the design of the multiflexible structures of piezoelectric micro-tools using topology optimization. The optimization problem is posed as the design of a flexible structure that maximizes different output displacements or output forces in different specified directions and points of the domain, in response to different excited piezoceramic portions: while minimizing the effects of movement coupling. The method is implemented based on the solid isotropic material with penalization (SIMP) model where fictitious densities are interpolated in each finite element, providing a continuum material distribution in the domain. As examples, designs of a single piezoactuator and an XY nano-positioner actuated by two FGM piezoceramics are considered. The resulting designs are compared with designs considering homogeneous piezoceramics. The present examples are limited to two-dimensional models because most of the applications for such micro-tools are planar devices.
机译:这项工作中考虑的微型工具主要由多个柔性结构组成,这些结构由两个或多个压电陶瓷设备驱动,这些设备必须在磁畴的不同指定点和不同方向上产生不同的输出位移和力。多柔韧性结构通过放大和改变压电陶瓷输出位移的方向而充当机械变压器。微型工具在诸如细胞处理,显微外科和显微/纳米技术工艺等广泛的应用中提供了巨大的希望。尽管由于各种压电陶瓷产​​生的运动之间的耦合,这些微型工具的设计很复杂,但可以通过拓扑优化概念来实现。最近,在压电材料中探索了功能梯度材料(FGM)的概念,以改善压电致动器的性能并延长其使用寿命。通常,对于FGM压电陶瓷,其弹性,压电和介电性能沿厚度分级。因此,这项工作的目的是研究压电陶瓷性能梯度在使用拓扑优化设计压电微型工具的多柔韧性结构中的影响。最优化问题是柔性结构的设计,该结构在响应于不同的激励压电陶瓷部分时,在不同的指定方向和区域点上最大化不同的输出位移或输出力:同时最小化运动耦合的影响。该方法是基于带有罚分的固体各向同性材料(SIMP)模型实现的,其中在每个有限元中插入了虚拟密度,从而在域中提供了连续的材料分布。作为示例,考虑由两个FGM压电陶瓷致动的单个压电致动器和XY纳米定位器的设计。将所得设计与考虑均质压电陶瓷的设计进行比较。本示例限于二维模型,因为此类微型工具的大多数应用是平面设备。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号