首页> 外文会议>Metrology, Inspection, and Process Control for Microlithography XX pt.2 >A Novel Approach to Characterize Trench Depth and Profile using the 3D Tilt Capability of a Critical Dimension-Scanning Electron Microscope at 65nm Technology Node
【24h】

A Novel Approach to Characterize Trench Depth and Profile using the 3D Tilt Capability of a Critical Dimension-Scanning Electron Microscope at 65nm Technology Node

机译:一种在65nm技术节点上使用临界尺寸扫描电子显微镜的3D倾斜能力表征沟槽深度和轮廓的新颖方法

获取原文
获取原文并翻译 | 示例

摘要

The use of dual-damascene (DD) technique for integration of Cu with low-k dielectric films has introduced new issues and challenges for the plasma etching processes. The two big challenges are: precise critical dimension (CD) control and good etch rate control over trench formation. Many details of the trench etch, such as Trench Depth, bottom rounding and sidewall smoothness have an effect on the device performance. One of the most important trench etch parameters is the trench depth. Proper control of the etch process to obtain the desired trench depth will directly impact the RC delay of the integrated circuit. There are several methods used in measuring trench depth and analyzing the trench profile. The most direct method will be to perform a cross-sectional analysis but this process is destructive. Other nondestructive conventional methods require physical contact with the wafer during measurement. For example: atomic force microscopy, high resolution profiler, etc. In this paper, we study the feasibility of using Applied Materials (AMAT) VeritySEM's 3D capabilities to characterize the trench depth and profiles without physically contacting the wafer. The VeritySEM's profile analysis utility provides edge profile reconstruction and 3D sidewall imaging. It is based on taking two SEM images of the same feature at two different tilts up to 15 degrees. The output of the analysis includes the reconstructed profile with its height, average slope angle and debug map of the low and high tilts. The main advantage of using a CDSEM tool to perform profile analysis is the productivity factor. This analysis can take place while also performing traditional CD measurement. This will eliminate the amount of queue time required on a conventional tool for profile measurement. As a result, an "in-situ" robust profile measurement recipe with good repeatability will improve the efficiency of the fab operations. In addition this approach is nondestructive and does not need any physical contact to the wafer.
机译:使用双大马士革(DD)技术将铜与低k介电膜集成在一起,已为等离子体蚀刻工艺带来了新的问题和挑战。两大挑战是:精确的临界尺寸(CD)控制和对沟槽形成的良好蚀刻速率控制。沟槽蚀刻的许多细节,例如沟槽深度,底部修圆和侧壁平滑度,都会影响器件性能。最重要的沟槽蚀刻参数之一是沟槽深度。适当控制蚀刻工艺以获得所需的沟槽深度将直接影响集成电路的RC延迟。测量沟槽深度和分析沟槽轮廓有几种方法。最直接的方法是执行横截面分析,但是此过程具有破坏性。其他非破坏性常规方法需要在测量过程中与晶圆进行物理接触。例如:原子力显微镜,高分辨率轮廓仪等。在本文中,我们研究了使用应用材料(AMAT)VeritySEM的3D功能在不物理接触晶圆的情况下表征沟槽深度和轮廓的可行性。 VeritySEM的轮廓分析实用程序提供边缘轮廓重建和3D侧壁成像。它基于以最大15度的两个不同倾斜角度拍摄两个具有相同特征的SEM图像。分析的输出包括重构的轮廓及其高度,平均倾斜角度以及低倾斜和高倾斜的调试图。使用CDSEM工具执行轮廓分析的主要优点是生产率因素。该分析可以在执行传统CD测量的同时进行。这将消除传统工具上用于轮廓测量的队列时间。结果,具有良好可重复性的“原位”稳健轮廓测量方法将提高晶圆厂运营的效率。另外,这种方法是非破坏性的,不需要与晶片有任何物理接触。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号