【24h】

Integration of Well, Core, and Seismic Data for 3D Depositional Environment and Reservoir Architecture Interpretation--Example from Offshore Vietnam

机译:井,核心和地震数据集成3D沉积环境和水库建筑解释 - 近海越南

获取原文

摘要

Determining the distribution and uncertainty of rock properties in a reservoir is fundamental for building a robust 3D geological model for field development. Higher resolution 1D well and core information needs to be integrated with the lower resolution 3D seismic volumes with the appropriate appreciation of the scale, resolution and uncertainty of the data sets. Sub-centimeter scale resolution can be achieved from detailed core description with sedimentary structures, trace fossils, grain size distribution, bed thicknesses, bed boundary characteristics, and bed stacking patterns giving indications of sedimentary processes that can be combined to infer depositional environments in a 1D vertical arrangement. Utilizing analogs of modern day and ancient systems, models can be proposed for the 3D distribution of sedimentary body architecture and rock property distribution. These analog models serve as starting points that need to be modified to the local parameters developed from seismic data sets to build a field specific geological model. Understanding the resolution of the seismic data is necessary to determine what size and shape of the sedimentary bodies can be resolved to take the 1D depositional environments interpreted from core away from the well bore into 3D seismic space. Data from offshore Vietnam serves as an example of this integration of well, core and seismic data sets for understanding reservoir distribution. Data collection included the acquisition of 160 m of core through the reservoir intervals of a well (Fig. 1). Basic observations of sedimentary structures and trace fossils place the section in a tide influenced delta system (Fig. 2). Detailed description of the core led to the definition of five facies with related depositional environments: The delta plain is characterized by fine-medium grained sandstone holding troughcross bedding and bidirectional current ripples, mud drapes and ripped up mud clasts indicating high energy migrating bars and tides (Fig. 3a). The trace fossil assemblage and syneresis cracks indicate stressed salinities during deposition. The well appears to have encountered tidal bars and ebb/flood channels situated on a delta plain. Shoreface deposits hold fine to medium-grained sandstone that generally display an overall coarsening upwards (Fig. 3b). A diverse suite of trace fossils are indicative of marine conditions with no fluvial input. Faint crossbeds suggest moderate wave reworking. This facies is representative of transgressive shoreface reworking tidal bars or a lateral shoreface to tide dominated delta. Delta front sediments exhibit very fine-grained sandstone and mudstone interbeds (~50/50) with wave and current ripples (Fig. 3c). A brackish trace fossil suite shows marine bioturbation in mudstones but little bioturbation in sandstone beds representing tidal, slackwater, and variation in fluvial discharge. These wave influenced sands and muds of a delta front setting were penetrated in several intervals of the well. Prodelta deposition is mudstone dominated with horizontal lamination and current ripples seen in interbedded very-fine grained sands and silts (Fig. 3d). The trace fossil assemblage, including diminutive stressed burrows Schaubcylindrichnus freyi, and syneresis cracks indicate stressed salinities during deposition. Deposition was driven by suspension settlement of muds and small density driven flows. Shelfal sediments are dominated by bioturbated mudstone deposits with horizontal lamination and minor current ripples in interbedded very-fine grained sands and silts sometimes preserved (Fig. 3e). The diverse suite of trace fossils indicateds open marine conditions (e.g., Phycosphion, Chondrites, Scolicia, and Cylindricnus). The suspension settlement of muds in full marine conditions is the major depositional process occurring.
机译:确定储层中岩石性质的分布和不确定性是构建稳健3D地质模型的基础开发。更高的分辨率1D井和核心信息需要与较低分辨率的3D地震卷集成,并对数据集的规模,分辨率和不确定性的适当欣赏。亚厘米刻度分辨率可以通过详细的核心描述来实现,具有沉积结构,痕量化石,粒度分布,床厚度,床边界特性和床堆堆叠模式,造成沉积过程的指示,可以将其在1D中推断沉积环境中的沉积过程垂直安排。利用现代和古代系统的类似物,可以提出模型,以便为沉积体架构和岩石物业分布的3D分布。这些模拟模型用作需要修改到从地震数据集开发的本地参数的起点,以构建特定地质模型。理解地震数据的分辨率是必要的,以确定沉积体的尺寸和形状可以解决,以便从孔中解释为孔中的1D沉积环境进入3D地震空间。越南越南的数据作为这种井,核心和地震数据集的整合的示例,以了解储层分布。数据收集包括通过井的储层间隔获取160米的核心(图1)。对沉积结构和痕量化石的基本观察将潮汐受影响的Delta系统中的截面放置(图2)。核心的详细描述导致了五个相关沉积环境的五个相的定义:Delta Plain的特点是细介质堆积砂岩,持有Troughrcros床上用品和双向电流涟漪,泥浆窗帘并剥离泥浆碎屑,表示高能量迁移杆和潮汐(图3A)。痕量化石组合和共轭裂缝在沉积期间表示应力的盐度。井似乎遇到了潮汐条和潮汐/洪水频道,位于三角洲平原上。 Shoreface沉积物对中粒砂岩保持良好,通常显示向上粗糙的整体粗糙(图3B)。多元化的痕量化石套件表明海洋病症没有氟尿输入。微弱的横梁建议温和的波浪重新加工。这张相代表了近潮汐条或横向横向横向的潮汐横切的代表。 Delta前沉积物具有非常细粒粒砂岩和泥岩嵌入(〜50/50),波和电流波纹(图3C)。一款咸踪散纹套房在泥岩中显示海洋生物疾病,但砂岩床的生物相关,代表潮汐,松散和河流放电的变化。这些波浪影响了三角形的沙子和泥浆的井的几个间隔渗透。 Prodelta沉积是用水平层压的泥岩,在堵塞的非常精细的粒状砂和淤泥中看到的电流涟漪(图3D)。痕量化石组合,包括小应力挖洞Schabcylindrichnus Freyi,并在沉积期间表示胁迫下的盐度。通过悬浮沉降和小密度驱动流动驱动沉积。湿度沉积物由生物干扰的泥岩沉积物主导,水平叠层和有时保留的非常细细粒砂岩和淤泥中的微电流涟漪(图3E)。多元化的痕量化石套件表明开放的海洋状况(例如,哌啶,白葡萄酒,Scolicia和Cylindricnus)。悬浮液在完全海洋状况中的泥浆是发生的主要沉积过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号