首页> 外文会议>International conference on the physics of reactors >ALEATORIC AND EPISTEMIC UNCERTAINTIES IN SAMPLING BASED NUCLEAR DATA UNCERTAINTY AND SENSITIVITY ANALYSES
【24h】

ALEATORIC AND EPISTEMIC UNCERTAINTIES IN SAMPLING BASED NUCLEAR DATA UNCERTAINTY AND SENSITIVITY ANALYSES

机译:基于抽样的核数据不确定度和敏感性分析的炼化和认知不确定性

获取原文

摘要

Sampling based uncertainty and sensitivity analyses due to epistemic input uncertainties, i.e. to an incomplete knowledge of uncertain input parameters, can be performed with arbitrary application programs to solve the physical problem under consideration. For the description of steady-state particle transport, direct simulations of the microscopic processes with Monte Carlo codes are often used. This introduces an additional source of uncertainty, the aleatoric sampling uncertainty, which is due to the randomness of the simulation process performed by sampling, and which adds to the total combined output sampling uncertainty. So far, this aleatoric part of uncertainty is minimized by running a sufficiently large number of Monte Carlo histories for each sample calculation, thus making its impact negligible as compared to the impact from sampling the epistemic uncertainties. Obviously, this process may cause high computational costs. The present paper shows that in many applications reliable epistemic uncertainty results can also be obtained with substantially lower computational effort by performing and analyzing two appropriately generated series of samples with much smaller number of Monte Carlo histories each. The method is applied along with the nuclear data uncertainty and sensitivity code package XSUSA in combination with the Monte Carlo transport code KENO-Va to various critical assemblies and a full scale reactor calculation. It is shown that the proposed method yields output uncertainties and sensitivities equivalent to the traditional approach, with a high reduction of computing time by factors of the magnitude of 100.
机译:基于对认知输入不确定性的基于不确定性和敏感性分析,即对不确定输入参数的不完全知识,可以通过任意应用程序进行任意应用程序来解决正在考虑的物理问题。对于稳态颗粒传输的描述,通常使用具有蒙特卡罗代码的微观过程的直接模拟。这引入了额外的不确定性来源,即梯形采样不确定性,这是由于采样执行的模拟过程的随机性,并且它增加了总组合输出采样不确定性。到目前为止,通过为每个样品计算运行足够大量的蒙特卡罗历史而使这种不确定度的这种不确定度最小化,从而使其影响可以忽略不计,与对认知不确定因素的影响相比。显然,这个过程可能会导致高计算成本。本文表明,在许多应用中,还可以通过在每种适当产生的两种适当的蒙特卡罗历史历史记录中进行两种适当的蒙特卡罗历史,以基本上更低的计算工作获得可靠的认知不确定性结果。该方法与核数据不确定性和敏感码包XSUSA与蒙特卡罗传输代码KENO-VA联合应用于各种关键组件和全尺度反应器计算。结果表明,该方法产生的输出不确定性和相当于传统方法的敏感性,通过100的幅度为100的计算时间缩短。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号