首页> 外文会议>IAEE International Conference;International Association for Energy Economics >CAPACITY VS ENERGY SUBSIDIES FOR RENEWABLES: BENEFITS AND COSTS FOR THE 2030 EU POWER MARKET
【24h】

CAPACITY VS ENERGY SUBSIDIES FOR RENEWABLES: BENEFITS AND COSTS FOR THE 2030 EU POWER MARKET

机译:可再生能源的容量与能源补贴:2030年欧盟电力市场的收益和成本

获取原文

摘要

OverviewIt is widely agreed that renewable electricity policies, such as feed-in tariffs, that encourage siting of renewabledevelopments irrespective of the marginal value of their output, promote inefficient investment in terms of maximizingthe net economic and environmental value. Instead, the EU and its member states are moving towards feed-inpremiums, curtailment requirements, and other policies that result in profitability better reflecting the market value ofelectric energy. Development may therefore be encouraged where resources produce fewer annual MWh, but wherethe increased market value more than makes up for that decrease, due to timing or transmission availability.However, although such policies might decrease the net economic cost of achieving renewable energy targets, it hasbeen argued that they are still inefficient in achieving the goal of promoting technology improvement. In particular, iflearning-by-doing occurs through cumulative MW investment rather than through cumulative MWh production, thenpolicies that are tied to investment rather than output might be more effective in reducing technology costs (Newberyet al., 2017). These policies may take the form of straight-forward per MW investment subsidies. A more sophisticatedvariant, promoted by Newbery et al. (ibid.), would pay a per MWh subsidy, but only up to a maximum number ofMWh per MW of capacity.In this paper, we compare the impact of energy-focused (feed-in premium) and capacity-focussed (investmentsubsidies) renewable policies upon the EU-wide electric power market in 2030 using a market equilibrium model. Inparticular, we ask the following question: How do the different policies impact the mix of renewable and non-renewable generation investment,electricity costs, renewable output, the amount of subsidies, and consumer prices? Specifically, do capacitybasedpolicies result in significantly more investment and possibly learning?Capacity versus energy subsidies may also have a strong effect on the economics of “system friendly” wind turbines,which have been recently promoted as having lower integration costs and more valuable power output profiles (Hirthand Müller, 2015; May, 2017). But because such turbines have lower capacity per unit output (which may be achievedsimply by using smaller electric power generators for a given tower size and rotor diameter), they may bedisadvantaged by capacity subsidy programs. We investigate whether this is indeed the case.Moreover, we also evaluate the efficiency of national policy targets for renewable electricity production (as a wholeor per technology) and compare these with a cost-effective allocation of renewable enegy production, given resourcequality, network constraints and the structure of the electricity system in the various EU countries.To address these issues, we use COMPETES, an EU-wide transmission-constrained power market model, which weenhanced to simulate both generation investment and operations decisions (Özdemir et al., 2013, 2016). In contrast,other analyses of renewable electric energy policies in Europe have often identified best locations and technologiesbased on levelized costs or other metrics that disregard the space- and timing-specific value of their electricity output.COMPETES uses linear programming to simulate the equilibrium in a market in which generation decisionssimultaneously consider the effect of development costs, subsidies, and energy market revenues on profitability.MethodsA market equilibrium assuming a perfectly competitive market has two characteristics. First, each market partypursues its own objective (its profit), and believes that it cannot increase its surplus by deviating from the equilibriumsolution. The second characteristic is that the market clears where supply equals demand for electricity at each nodein the network. One approach to modeling market equilibria is to concatenate the first-order conditions for each marketparty's problem with market clearing equalities, yielding a complementarity problem. Complementarity problems canbe solved either by specialized algorithms or, in special cases, by instead formulating and solving an equivalent singleoptimization model. The version of COMPETES applied here adopts the latter approach. It uses a single linearprogram that is equivalent to a market with profit maximizing generators who invest and operate to maximize profitsand a transmission operator who minimizes dispatch costs, all subject to policy constraints such as renewable energyor capacity targets and carbon prices. For practicality, this version of COMPETES uses a sample of 1200 (out of 8760)hours to capture load and renewable output variability within a year, and a static (single year) equilibrium is calculatedfor the year 2030 rather than for a multiple year time horizon. Also, this version represents the EU 28 country market with 22 nodes, considering net transmission capability constraints between countries or regions.ResultsAn initial comparison of four policies (no renewable subsidies, which results in 46.8% renewable production share inannual EU demand; a MWh feed-in premium that achieves a 65% renewable goal, and two MW investment subsidiespolicies that also achieve 65% renewable energy) is shown in the first four columns of the table below. The renewablepolicies we simulated assume a single EU-wide target without country-specific mandates, and furthermore assumethat the same level of subsidy applies to all renewable sources. Of course, the reality of EU policy is that there aredistinct programs for wind, solar, biomass, and hydropower, and each country has their own targets, with relativelylimited opportunities for countries to satisfy their renewable requirements elsewhere. However, these simplificationsallow us to to explore the general impact of energy versus capacity policies.Our simulations also explored the impact of country-specific targets (last column). This is a MW-based policy witha minimum amount of renewable solar, wind onshore and offshore capacity by country based on targets reported byENTSO-E’s Sustainable Transition (ST) scenario (ENTSO-E, 2018). The cost of achieving a 52.7% EU-widerenewable energy goal using the specific country goals was 8,5 Billion Euro per year. This is about six times higherthan than the incremental cost of achieving the same level by using the most cost-effective locations and technologiesin the EU, and almost as high as the cost of achieving a much more ambitious 65% target by the most cost-efficientmeans. Thus, country-specific targets without renewable energy credit trading greatly increase the cost of renewablepolicies.ConclusionsAssuming that policy makers adjust capacity targets to meet a 65% energy target, the basic capacity-based policy mustincrease costs of achieving that target (by 58%), since directly constraining (and paying) the product that directlycontributes to a desired target is the first-best way of meeting that target. But the capacity policy does have the benefitof increasing the GW of renewable investment compared to the no-policy case (446 additional GW, which is 63%higher than the 273 GW additional capacity in the energy target case). In contrast, the Newbery et al. proposal’s resultsfall in-between these cases, as it has characteristics of both capacity and energy policies; compared to no policy, itincreases the incremental GW capacity investment (by 36%, 372 GW vs. 273 GW) at a somewhat lower cost perincremental GW unit (incremental cost of achieving the target of 28%).On the other hand, we note Newbery et al. (2017)’s observation that if the objective is to promote technologyimprovement through capacity installation, then it can be significantly less expensive to use capacity subsidymechanisms to achieve a given capacity installation goal than to use an approach based on renewable energy subsidy.In particular, in other runs (not shown), we have found that the 377.3 GW of new renewables that results from the65% feed-in premium policy (second column of table) could also be achieved directly by a 47614€/MW/yr subsidy,at an incremental cost that is 26% lower than the cost of the feed-in premium policy. On the other hand, the capacitypolicy also achieves only 59,9% renewable penetration, and has higher carbon emissions.Meanwhile, other results (not shown) indicate that “system friendly” wind turbines with half the generator capacitymight be financially attractive under MWh subsidies because the generator cost savings might exceed foregonerevenues and subsidies during the times of highest wind. Whether this is the case or not depends on the assumptionsmade concerning the cost savings from reduced electric generator and associated machinery expenses. However,foregone revenue is several times larger if instead the capacity-based policy is in place, greatly decreasing the valueof the system friendly design.Overall, our analysis shows that there is considerable room for coordinating and improving renewable energy policieswithin Europe which will help reduce the total costs of realizing renewable energy production.
机译:概述 众所周知,可再生电力政策,例如饲养关税,鼓励可再生选址 无论其产出的边际价值如何,发展无关,促进最大化的低效投资 净经济和环境价值。相反,欧盟及其成员国正在向饲料迈进 优惠,缩减要求和导致盈利能力更好地反映市场价值的其他政策 电能。因此,在资源生产较少的年度MWH时,可能会鼓励开发,但在哪里 由于定时或传输可用性,市场价值增加超过了这一减少的贡献。 但是,尽管这些政策可能会降低实现可再生能源目标的净经济成本,但它有 被认为,他们仍然效率低下,实现了促进技术改进的目标。特别是,如果 通过累积的MW投资而不是通过累积的MWH生产来进行学习,然后 与投资而非产出相关的政策可能更有效地降低技术成本(Newbery 等等。,2017)。这些政策可能采取每兆瓦投资补贴的直接表现。一个更复杂的 Variant,由Newbery等人推广。 (同上),每MWH补贴每MWH补贴,但只能达到最大数量 每兆瓦的兆瓦。 在本文中,我们比较了专注的能量(饲料溢价)和集中权的影响(投资 补贴)使用市场均衡模型在2030年欧盟电力市场的可再生政策。在 特别是,我们问以下问题: 不同的政策如何影响可再生和不可再生的生成投资的组合, 电力成本,可再生产出,补贴金额和消费价格?具体地,做电容 政策导致更多的投资和可能学习? 能力与能源补贴也可能对“系统友好”风力涡轮机的经济性有很大的影响, 最近被推广为具有较低的集成成本和更有价值的功率输出型材(HIRTH 和Müller,2015; 5月,2017年)。但由于这种涡轮机的每个单位输出具有较低的容量(这可以实现 只需使用较小的发电机,对于给定的塔尺寸和转子直径),它们可以是 容量补贴计划的不利地位。我们调查这是否确实如此。 此外,我们还评估了可再生电力生产国家政策目标的效率(整体 或者每个技术)并比较这些与可再生资源的可再生镇部生产的经济实惠的分配 各种欧盟国家的质量,网络限制与电力系统的结构。 要解决这些问题,我们使用竞争,一个欧盟传输受限的电力市场模型,我们 增强以模拟生成投资和运营决策(Özdemir等,2013,2016)。相比之下, 其他分析欧洲可再生电能政策经常确定最佳地点和技术 基于尺寸的成本或其他指标,无视其电力输出的空间和时序特定值。 竞争使用线性规划来模拟在哪个产生决策的市场中的均衡 同时考虑开发成本,补贴和能源市场收入对盈利能力的影响。 方法 市场均衡假设具有完美竞争的市场有两个特点。首先,每个市场党 追求自己的目标(其利润),并认为它无法通过偏离均衡而无法增加其盈余 解决方案。第二个特征是市场清除供应等于每个节点的电力需求 在网络中。建模市场均衡的一种方法是将每个市场的一阶条件连接 党的市场清算平衡的问题,产生了互补问题。互补问题可以 通过专门的算法或在特殊情况下通过代替制定和解决等价物 优化模型。这里应用的竞争的版本采用后一种方法。它使用单个线性 相当于投资和运营利润最大化的利润最大化发电机的计划 和一个传输运营商,最大限度地减少派遣成本,所有这些都受到可再生能源等政策限制的影响 或能力目标和碳价格。对于实用性,此版本的竞争使用1200的样本(共分为8760) 几小时以在一年内捕获负载和可再生输出的变化,并计算静态(单年)平衡 对于2030年而不是多年时间地平线。此外,此版本代表欧盟28个国家市场,22个节点考虑国家或地区之间的净传输能力限制。 结果 四种政策的初步比较(无可再生能源补贴,导致可再生能源生产份额占46.8%) 欧盟年度需求;达到65%的可再生能源目标的兆瓦时上网电价补贴和两项兆瓦投资补贴 下表的前四列显示了可实现65%的可再生能源的政策)。可再生能源 我们模拟的政策假设没有整个国家/地区强制性的单一欧盟目标,并且进一步假设 相同水平的补贴适用于所有可再生能源。当然,欧盟政策的现实是 针对风能,太阳能,生物质能和水力发电的不同计划,每个国家都有自己的目标,相对而言 各国在其他地方满足其可再生能源需求的机会有限。但是,这些简化 使我们能够探索能源与容量政策的总体影响。 我们的模拟还探讨了特定国家/地区目标的影响(最后一栏)。这是一项基于MW的政策, 根据国家报告的目标,按国家划分的最少可再生太阳能,陆上和海上风能和海上能 ENTSO-E的可持续过渡(ST)方案(ENTSO-E,2018年)。在欧盟范围内实现52.7%的成本 使用特定国家/地区目标的可再生能源目标是每年85亿欧元。这是大约六倍 比使用最具成本效益的地点和技术达到相同水平的增量成本 在欧盟范围内,几乎与通过最具成本效益的目标实现远大得多的65%目标的成本一样高 方法。因此,没有可再生能源信用交易的国家特定目标极大地增加了可再生能源的成本 政策。 结论 假设政策制定者调整产能目标以达到65%的能源目标,则基本的基于产能的政策必须 由于直接限制(并支付)直接购买产品的成本,因此将实现该目标的成本(提高了58%)增加了 为达到预期目标做出贡献是实现该目标的最佳方法。但是容量政策确实有好处 与无政策情况相比增加了可再生能源投资的总GW(增加了446 GW,占63%) 高于能源目标案例中的273 GW的额外容量)。相反,Newbery等。提案的结果 由于具有容量和能源政策的特点,因此介于这些情况之间;相比没有政策,它 以每千瓦时较低的成本增加了GW增量投资(增加了36%,分别为372 GW和273 GW) GW增量单位(达到目标的增量成本为28%)。 另一方面,我们注意到Newbery等人。 (2017)的观察,如果目标是促进技术 通过容量安装进行改进,那么使用容量补贴的成本就可以大大降低 达到给定容量安装目标的机制,而不是使用基于可再生能源补贴的方法。 特别是,在其他运行中(未显示),我们发现377.3 GW的新可再生能源是由 还可以通过47614欧元/兆瓦/年的补贴直接实现65%的上网电价保费政策(表的第二列),其增量成本比上网电价保费政策的成本低26%。另一方面,容量 该政策还只能实现59.9%的可再生能源普及率,并且具有更高的碳排放量。 同时,其他结果(未显示)表明,“系统友好”型风力发电机的发电能力只有一半 兆瓦时补贴可能在财务上具有吸引力,因为发电机成本节省可能超过了预期 大风时期的收入和补贴。是否是这样取决于假设 关于减少发电机和相关机械费用所节省的成本。然而, 如果采用了基于容量的策略,那么放弃的收入将是原来的几倍,从而大大降低了价值 系统友好的设计。 总体而言,我们的分析表明,协调和改进可再生能源政策的空间很大 在欧洲范围内,这将有助于降低实现可再生能源生产的总成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号