首页> 外文会议>AIAA modeling and simulation technologies conference;AIAA aviation forum >Physics-based Radio Frequency Visualization for Operational Analysis
【24h】

Physics-based Radio Frequency Visualization for Operational Analysis

机译:用于操作分析的基于物理的射频可视化

获取原文

摘要

Engagement and mission-level simulations utilize effects-based modeling, which increases computational speed, but may lead to inaccuracies, especially when evaluating the complex interactions between multiple radio frequency (RF) sources and targets. While the use of physics-based RF tools can increase the fidelity of the radar system analysis, the computational burden may become time consuming for realistic scenarios with multiple entities. As a result, their use is limited to only constructive environments and non-real time analysis. There is a need to develop a hybrid approach that leverages effects-based modeling for rapid analysis, but can also utilize validated physics-based models during key moments in the simulation. To address this need, the Advanced Framework for Simulation, Integration, and Modeling (AFSIM) was combined with a validated physics-based RF tool called Adaptive Sensor Prototyping ENvironinent (ASPEN™). AFSIM is a government off the shelf framework managed and developed by the Air Force Research Laboratory; this framework excels at managing different entities in a wide variety of missions and includes a robust visualization environment. ASPEN™ was developed by Georgia Tech Research Institute (GTRI) and models pulse-level RF effects that can then be processed using a variety of algorithms, including space-time adaptive processing. While linking these tools together would provide higher confidence in the RF-based results of a mission simulation, the computational burden could significantly increase. Therefore, it was necessary to develop an integration architecture that intelligently switches between effects-based and physics-based models when appropriate. This provides the benefit of ensuring that any scenario evaluation, whether for training, mission planning, or operational analysis, can be less computationally expensive while providing more confidence in the RF results. This paper describes the development of this integration architecture and demonstrates the capabilities of its implementation through a notional example.
机译:参与度和任务级模拟使用基于效果的建模,这会提高计算速度,但可能会导致不准确,尤其是在评估多个射频(RF)源与目标之间的复杂交互时。尽管使用基于物理学的RF工具可以提高雷达系统分析的保真度,但对于具有多个实体的实际场景而言,计算负担可能会变得很耗时。结果,它们的使用仅限于构造性环境和非实时分析。需要开发一种混合方法,该方法利用基于效果的建模进行快速分析,但也可以在仿真的关键时刻使用经过验证的基于物理的模型。为了满足这一需求,将高级仿真,集成和建模框架(AFSIM)与经过验证的基于物理的RF工具(称为自适应传感器原型环境(ASPEN™))相结合。 AFSIM是由空军研究实验室管理和开发的现成政府框架;该框架擅长管理各种任务中的不同实体,并包括一个强大的可视化环境。 ASPEN™由佐治亚理工学院(GTRI)开发,对脉冲级RF效应进行建模,然后可以使用多种算法(包括时空自适应处理)对其进行处理。虽然将这些工具链接在一起可以提高基于RF的任务模拟结果的可信度,但计算负担可能会大大增加。因此,有必要开发一种集成架构,以在适当的时候在基于效果的模型和基于物理的模型之间智能地切换。这样做的好处是,可以确保任何情景评估(无论是用于培训,任务计划还是运营分析)都可以在降低计算成本的同时,对RF结果提供更多的信心。本文描述了此集成体系结构的开发,并通过一个示例性示例演示了其实现的功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号