首页> 外文会议>IEEE International Ultrasonics Symposium >The Distinction Between Noncausal and Nonlocal Behavior in a Time-Fractional Wave Equation
【24h】

The Distinction Between Noncausal and Nonlocal Behavior in a Time-Fractional Wave Equation

机译:时间分数阶波动方程中非因果行为与非局部行为的区别

获取原文

摘要

There is some confusion in the ultrasound literature with regards to the distinction between noncausal and nonlocal behavior in fractional wave equations that describe power law attenuation. In a causal system, the effect follows the cause, and in a noncausal system, some portion of the response occurs prior to the application of the input. In contrast, local operators only relate values at a single point, and nonlocal operators require information from distant sources in time and/or space. Causality strictly describes the time response, whereas the absence or presence of locality applies to both the temporal and the spatial response of a system. Thus, causality and locality are two completely different concepts, which we will reinforce through the presentation of several different examples. The distinction between causality and locality is demonstrated through analysis of the power law wave equation, which exhibits four different combinations of causality and locality, namely causal/local, noncausalonlocal, causalonlocal, and noncausal/local for different values of the power law exponent y. The power law wave equation is causal for power law exponents 0 ≤ y <; 1, and the power law wave equation is noncausal for 1 <; y ≤ 2. Also, the power law wave equation is local for y = 0 and y = 2, while the power law wave equation is nonlocal for 0 <; y <; 1 and 1 <; y <; 2. Causal and noncausal responses are described through calculation of the time-domain Green's function with the Stable Toolbox, whereas local and nonlocal behavior is demonstrated for the integer and fractional derivatives. When y = 0, the power law wave equation simultaneously describes local and causal behavior, and when y = 2, the power law wave equation is noncausal and local. When 0 <; y <; 1, the power law wave equation is causal and nonlocal, and when 1 <; y <; 2, the power law wave equation is noncausal and nonlocal. Numerical results show an example of a causal response for a nonlocal system with power law exponent y = 1/2, a noncausal response for a nonlocal system with power law exponent y = 3/2, and a noncausal response for a local system with power law exponent y = 2. From these results, the causal and noncausal responses are easily identified, and then additional mathematical analysis of the operators is required to distinguish between local and nonlocal behavior.
机译:在描述功率定律衰减的分数波方程中,非因果行为与非局部行为之间的区别在超声文献中存在一些混淆。在因果系统中,结果跟随原因,而在非因果系统中,响应的某些部分在施加输入之前发生。相反,本地运算符仅在单个点上关联值,非本地运算符需要时间和/或空间上来自遥远源的信息。因果关系严格地描述了时间响应,而局部性的不存在或存在都适用于系统的时间和空间响应。因此,因果关系和局部性是两个完全不同的概念,我们将通过介绍几个不同的示例来加强这些概念。通过对幂律波动方程进行分析,可以证明因果关系与局部性之间的区别,该方程显示了因果关系与局部性的四种不同组合,即因数幂不同而导致的因果/局部,非因果/非局部,因果/非局部和非因果/局部律指数y。幂律波动方程是幂律指数0≤y <;的因果关系; 1,幂律波动方程对于1 <无因果关系; y≤2。而且,幂律波动方程在y = 0和y = 2时是局部的,而幂律波动方程在0 <;时是非局部的。 y <; 1和1 <; y <; 2.因果响应和非因果响应是通过使用“稳定工具箱”计算时域格林函数来描述的,而整数和分数导数则表现出局部和非局部行为。当y = 0时,幂律波动方程同时描述局部和因果行为,当y = 2时,幂律波动方程为非因果关系和局部。当0 <; y <; 1,幂律波动方程是因果和非局部的,且当1 <时; y <; 2,幂律波动方程是非因果和非局部的。数值结果显示了一个示例,其中幂律指数为y = 1/2的非局部系统的因果响应,幂律指数为y = 3/2的非局部系统的非因果响应,以及幂次为局部系统的非因果响应律指数y =2。从这些结果中,很容易确定因果响应和非因果响应,然后需要对运算符进行附加的数学分析,以区分局部行为和非局部行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号