首页> 外文会议>International workshop on structural health monitoring >Transducer Placement Option for Ultrasonic Lamb Wave Structural Health Monitoring (SHM) on Damage Tolerant Aircraft Substructure
【24h】

Transducer Placement Option for Ultrasonic Lamb Wave Structural Health Monitoring (SHM) on Damage Tolerant Aircraft Substructure

机译:耐损伤飞机子结构上的超声波Lamb Wave结构健康监测(SHM)的换能器放置选件

获取原文

摘要

In this paper, we review two transducer placement options' to locate and quantify damage in primary aircraft structures using ultrasonic Structural Health Monitoring (SHM). The first placement approach concerns a known expected damage location, for example a fatigue crack growth from rivet hole. The location of such a damage can already be predicted by fracture mechanics and therefore the focus of this SHM system design is to determine the damage size. For this approach, we have developed our previous work in finite-element (FE) modelling of a damage tolerant aluminum fuselage by introducing an artificial crack into the structural FE model and assessed its influence on the Lamb wave propagation. Image processing was performed by subtracting the wave propagation image of the damaged from the undamaged structure. A second category of damage occurs at locations that cannot be predicted by fracture mechanics, such as impact damage from hail. This type of damage requires the SHM system to both locate and assess the size of the damage and this is heavily influenced by the positioning of the transducers. Optimal sensor placement (OSP) techniques tend to rely on assessment using the probability of detection (POD) parameter. In this work, we propose an alternative placement method which maximizes the detectability of the transducer coverage area based on the pulse-echo technique without relying on the POD parameter, by determining the fitness function based on sensor coverage area for single and multiple sensors and random damage locations. Results from both these approaches are compared in this paper, with a perspective towards the overall design of SHM systems.
机译:在本文中,我们回顾了两个换能器放置选项,以使用超声结构健康监测(SHM)来定位和量化主要飞机结构中的损坏。第一种放置方法涉及已知的预期损坏位置,例如,铆钉孔引起的疲劳裂纹扩展。这种损坏的位置已经可以通过断裂力学进行预测,因此,此SHM系统设计的重点是确定损坏的大小。对于这种方法,我们通过在结构有限元模型中引入人工裂纹并评估其对Lamb波传播的影响,发展了以前在有限元(FE)模型中对耐损伤的铝制机身进行建模的工作。通过从未损坏的结构中减去损坏的波传播图像来执行图像处理。第二类破坏发生在断裂力学无法预测的位置,例如来自冰雹的冲击破坏。这种类型的损坏要求SHM系统同时定位和评估损坏的大小,并且受换能器的位置影响很大。最佳传感器放置(OSP)技术倾向于依赖使用检测概率(POD)参数的评估。在这项工作中,我们提出了一种替代的放置方法,该方法通过基于单个和多个传感器的传感器覆盖区域并根据传感器覆盖区域确定适应度函数,在不依赖于POD参数的情况下,基于脉冲回波技术来最大化换能器覆盖区域的可检测性损坏位置。本文比较了这两种方法的结果,并展望了SHM系统的总体设计。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号