【24h】

Structured Receptive Fields in CNNs

机译:CNN中的结构化接受场

获取原文

摘要

Learning powerful feature representations with CNNs is hard when training data are limited. Pre-training is one way to overcome this, but it requires large datasets sufficiently similar to the target domain. Another option is to design priors into the model, which can range from tuned hyperparameters to fully engineered representations like Scattering Networks. We combine these ideas into structured receptive field networks, a model which has a fixed filter basis and yet retains the flexibility of CNNs. This flexibility is achieved by expressing receptive fields in CNNs as a weighted sum over a fixed basis which is similar in spirit to Scattering Networks. The key difference is that we learn arbitrary effective filter sets from the basis rather than modeling the filters. This approach explicitly connects classical multiscale image analysis with general CNNs. With structured receptive field networks, we improve considerably over unstructured CNNs for small and medium dataset scenarios as well as over Scattering for large datasets. We validate our findings on ILSVRC2012, Cifar-10, Cifar-100 and MNIST. As a realistic small dataset example, we show state-of-the-art classification results on popular 3D MRI brain-disease datasets where pre-training is difficult due to a lack of large public datasets in a similar domain.
机译:当训练数据有限时,很难使用CNN学习强大的功能表示。预训练是克服此问题的一种方法,但它需要与目标域充分相似的大型数据集。另一个选择是在模型中设计先验,其范围从调整的超参数到像散布网络之类的完全工程化表示形式。我们将这些想法组合到结构化的接收域网络中,该模型具有固定的滤波器基础,但保留了CNN的灵活性。通过在CNN中将接收域表示为固定基础上的加权和,可以实现这种灵活性,其本质与散布网络类似。关键区别在于,我们从基础上学习了任意有效的过滤器集,而不是对过滤器建模。这种方法明确地将经典的多尺度图像分析与通用的CNN连接起来。借助结构化的接收场网络,我们对中小型数据集场景的非结构化CNN以及对大型数据集的散射均取得了显着改善。我们验证了关于ILSVRC2012,Cifar-10,Cifar-100和MNIST的发现。作为一个现实的小型数据集示例,我们在流行的3D MRI脑疾病数据集上显示了最新的分类结果,这些数据集由于缺乏相似领域的大型公共数据集而很难进行预训练。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号