首页> 外文会议>ES2011;International conference on energy sustainability >EXERGY ANALYSIS OF COAL ENERGY CONVERSION WITH CARBON SEQUESTRATION VIA COMBUSTION IN SUPERCRITICAL SALINE AQUIFER WATER
【24h】

EXERGY ANALYSIS OF COAL ENERGY CONVERSION WITH CARBON SEQUESTRATION VIA COMBUSTION IN SUPERCRITICAL SALINE AQUIFER WATER

机译:超临界盐水层水燃烧燃烧碳能转化煤的能效分析

获取原文

摘要

Decarbonization of electricity production is a vital component in meeting stringent emissions targets aimed at curbing the effects of global climate change. Most projected pathways toward meeting those targets include a large contribution from carbon capture and storage. Many capture technologies impose a large energy penalty to separate and compress carbon dioxide (CO_2). Also, injected neat CO_2 in a deep saline aquifer is buoyant compared to the aquifer brine and requires an impermeable seal to prevent it from escaping the aquifer. An alternative technology was recently proposed by Heberle and Edwards [1] that burns coal in supercritical water pumped from a saline aquifer. The entire effluent stream is sequestered, capturing all carbon and non-mineral coal combustion products in the process. This stream is denser than the aquifer brine and therefore offers a higher level of storage security, and can utilize aquifers without suitable structural trapping. This technology also increases energy security in the U.S., allowing for the use of its coal resources while avoiding atmospheric pollution. In this paper, a complete architecture employing supercritical water oxidation is proposed, including a liquid-oxygen-pumped air separation unit and regenerator system that heats and desalinates the incoming brine. A thermodynamic model calculates the overall thermal efficiency of the plant, including all separation and storage energy penalties. In addition, an exergy analysis gives insights into the least efficient parts of the proposed system. The details and assumptions of the model are discussed. Insights from the model and these analyses elucidate how the proposed system may be operated as a zero-emission electricity source and the technical challenges that must be addressed for deployment.
机译:电力生产的脱碳是实现旨在抑制全球气候变化影响的严格排放目标的重要组成部分。达到这些目标的大多数预计途径包括碳捕获和储存的巨大贡献。许多捕获技术对分离和压缩二氧化碳(CO_2)施加了巨大的能量损失。而且,与含水层盐水相比,在深盐水层中注入的纯净CO_2浮力很大,并且需要不透水的密封以防止其逸出含水层。 Heberle和Edwards [1]最近提出了另一种技术,该技术可在从盐水层泵出的超临界水中燃烧煤炭。整个废水流被隔离,在此过程中捕获了所有碳和非矿物煤燃烧产物。该水流比含水层盐水浓,因此提供了更高的存储安全性,并且可以利用含水层而没有适当的结构性捕集。这项技术还提高了美国的能源安全性,可以在避免大气污染的同时使用其煤炭资源。在本文中,提出了一种采用超临界水氧化的完整体系结构,包括液氧泵送空气分离单元和再生器系统,该系统加热和脱盐盐水。一个热力学模型计算工厂的整体热效率,包括所有分离和存储能量的损失。此外,火用分析可以深入了解拟议系统中效率最低的部分。讨论了模型的细节和假设。从模型和这些分析得出的见解阐明了拟议系统如何作为零排放电源运行,以及部署中必须解决的技术挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号