首页> 外文会议>Annual meeting of the Institute of Nuclear Materials Management >CODED APERTURE GAMMA-RAY IMAGING USING 3D POSITION-SENSITIVE SEMICONDUCTOR RADIATION DETECTORS FOR NUCLEAR SECURITY APPLICATIONS
【24h】

CODED APERTURE GAMMA-RAY IMAGING USING 3D POSITION-SENSITIVE SEMICONDUCTOR RADIATION DETECTORS FOR NUCLEAR SECURITY APPLICATIONS

机译:用于核安全应用的使用3D位置敏感半导体辐射探测器的编码孔径伽马射线成像

获取原文

摘要

In the past decade, there has been a significant increase in demand for radiation detectors that locate and identify potentially threatening nuclear materials. An 18 - detector array system was developed at the University of Michigan to be used in such applications. This portable detector system has the ability to detect and image gamma rays with energies between 30keV and 3MeV. Compton imaging is utilized to map out gamma-ray distributions in 4n space for energies above about 300keV. Due to the low Compton-interaction probability at energies below 300keV in the CdZnTe semiconductor detector material, gamma rays at these energies must be imaged using an alternative method which relies on photoelectric interactions. The system uses Coded Aperture Imaging (CAI) to image these lower-energy gamma rays. CAI relies on coded tungsten or lead masks with numerous open and closed elements. The size of these mask elements is chosen based on the spatial resolution of the detector, roughly one millimeter in this case. The coded mask is placed near the position-sensitive detector. The mask-to-detector distance is optimized with respect to the field-of-view and angular resolution of the image to be formed. When the mask-detector system is exposed to low-energy gamma rays, each mask element either attenuates or transmits gamma rays, resulting in a position-dependent count distribution in the detector. The count distribution and knowledge of the mask design and position are then used to reconstruct an image of the incident source distribution using algorithms such as backprojection, deconvolution, and maximum likelihood expectation maximization. CAI, coupled with Compton imaging, allows our group to extend imaging capabilities across the entire dynamic range of the electronic readout system. This work is supported by the U.S. Department of Homeland Security's Domestic Nuclear Detection Office and the National Science Foundation's Academic Research Initiative.
机译:在过去的十年中,对定位和识别潜在威胁核材料的辐射探测器的需求已大大增加。密歇根大学开发了一种18探测器阵列系统,用于此类应用。这种便携式探测器系统能够探测和成像能量在30keV和3MeV之间的伽马射线。利用康普顿成像技术可以绘制出大约300keV以上能量的4n空间中的伽马射线分布。由于CdZnTe半导体检测器材料中低于300keV的能量具有较低的Compton相互作用概率,因此必须使用依赖于光电相互作用的替代方法来成像这些能量下的伽马射线。该系统使用编码孔径成像(CAI)对这些较低能量的伽马射线成像。 CAI依赖于带有大量打开和关闭元素的编码钨或铅掩模。这些掩模元素的大小是根据检测器的空间分辨率来选择的,在这种情况下约为1毫米。编码的掩模放置在位置敏感检测器附近。掩模到检测器的距离相对于要形成图像的视野和角分辨率进行了优化。当掩模检测器系统暴露于低能伽玛射线时,每个掩模元素都会衰减或透射伽玛射线,从而导致检测器中的位置相关计数分布。然后,使用诸如反投影,反卷积和最大似然期望最大化等算法,将计数分布以及掩模设计和位置的知识用于重建入射源分布的图像。 CAI与康普顿成像技术相结合,使我们的团队能够在电子读出系统的整个动态范围内扩展成像功能。这项工作得到了美国国土安全部美国国内核探测办公室和美国国家科学基金会的学术研究计划的支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号