首页> 外文会议>Annual meeting of the Institute of Nuclear Materials Management >Numerical simulation of nuclear materials detection, imaging and assay with MEGa-rays
【24h】

Numerical simulation of nuclear materials detection, imaging and assay with MEGa-rays

机译:用MEGa射线对核材料进行检测,成像和分析的数值模拟

获取原文

摘要

Once fully operational, LLNL's Nuclear Photonics Facility is expected to be capable of generating tunable, mono-energetic gamma-ray ("MEGa-ray") beams with energies of ~ 0.5 - 2.5 MeV and spectral intensities many orders of magnitude beyond those of current (3rd generation) synchrotron light sources. MEGa-ray beams will allow us to exploit a physical process known as nuclear resonance fluorescence (NRF), in which an energetic photon is absorbed by a nucleus, which then decays to its ground state by emitting one or more characteristic gamma rays. NRF has already been demonstrated as a potentially viable technique for detecting shielded nuclear materials in single-photon-counting experiments done with high-resolution {e.g. HPGe) detectors; however, the maximum count rates that these energy-differential (spectroscopic) detectors can sustain (e.g. < 20 kHz for moderate-sized detectors) effectively precludes their use with high-intensity photon beams such as MEGa-ray. In this paper we will present the conceptual design of an energy-integrated (i.e. non-spectroscopic), "Dual-Isotope Notch Observer" (DINO) NRF detection system which should be capable of detecting, imaging and assaying shielded nuclear materials (e.g. ~(235)U) irradiated by photon beams of arbitrary intensity by comparing the photon yields emitted at back angles from a pair of resonant {e.g. ~(235)U) and non-resonant (e.g. ~(238)U) "witness foils" located in a heavily-shielded environment downstream from the object under inspection. The ratio of the total, energy-integrated signals from scintillators recording emissions from the resonant and non-resonant foils can be used to define a robust "decision metric" that can be used in search scenarios to detect the presence of the resonant material or, given a suitable detector calibration procedure, provide accurate estimates of the aerial density ([gm/cm~2]) of the resonant material along the incident beam path. We have used detailed numerical simulations to investigate a number of different detection and/or imaging scenarios; however, in this paper we will focus on the potential for using MEGa-ray beams and DINO detector systems to assay conventional UO_2 fuel rods in scenarios where other assay techniques might not be as reliable or even feasible.
机译:一旦全面投入使用,LLNL的核光子学设施有望能够产生可调谐的单能伽马射线(“ MEGa-ray”)光束,其能量约为〜0.5-2.5 MeV,光谱强度比目前的强度高几个数量级。 (第三代)同步加速器光源。 MEGa射线束将使我们能够利用一种称为核共振荧光(NRF)的物理过程,在该过程中,高能光子被原子核吸收,然后通过发射一种或多种特征性伽玛射线而衰减到其基态。 NRF已经被证明是在高分辨率的单光子计数实验中检测被屏蔽的核材料的潜在可行技术。 HPGe)探测器;但是,这些能量差(光谱)探测器可以承受的最大计数率(例如对于中等大小的探测器<20 kHz)有效地阻止了它们与MEGa射线等高强度光子束一起使用。在本文中,我们将介绍能量集成(即非光谱)“双同位素刻槽观测器”(DINO)NRF检测系统的概念设计,该系统应能够检测,成像和分析被屏蔽的核材料(例如〜通过比较一对共振(例如, 〜(235)U)和非共振(例如〜(238)U)“见证箔”位于被检查物体下游的高度屏蔽环境中。来自闪烁体的总能量积分信号之比,记录了来自共振箔片和非共振箔片的发射,可用于定义一个可靠的“决策指标”,该指标可用于搜索方案中以检测共振材料的存在,或在给定合适的探测器校准程序的情况下,提供沿入射光束路径的共振材料的空中密度([gm / cm〜2])的准确估计。我们已经使用了详细的数值模拟来研究许多不同的检测和/或成像情况。但是,在本文中,我们将重点关注在其他分析技术可能不那么可靠甚至不可行的情况下,使用MEGa射线束和DINO检测器系统分析常规UO_2燃料棒的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号